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Preface

The purpose of this book is to convey the conceptual framework that underlies the
microscopic or atomistic theory of matter, emphasizing those aspects that relate to
electronic properties, especially current flow. Even a hundred years ago the atomistic
viewpoint was somewhat controversial and many renowned scientists of the day ques-
tioned the utility of postulating entities called atoms that no one could see.1 What no
one anticipated was that by the end of the twentieth century, scientists would actually be
“seeing” and taking pictures of atoms and even building “nanostructures” engineered
on a nanometer length scale.2 The properties of such nanostructures cannot be modeled
in terms of macroscopic concepts like mobility or diffusion. What we need is an atomic
or microscopic viewpoint and that is what this book is about.

The microscopic theory of matter was largely developed in the course of the twentieth
century following the advent of quantum mechanics and is gradually becoming an
integral part of engineering disciplines, as we acquire the ability to engineer materials
and devices on an atomic scale. It is finding use in such diverse areas as predicting
the structure of new materials, their electrical and mechanical properties, and the rates
of chemical reactions, to name just a few applications. In this book, however, I will
focus on the flow of current through a nanostructure when a voltage is applied across
it. This is a problem of great practical significance as electronic devices like transistors
get downscaled to atomic dimensions. It is a rapidly evolving field of research and
the specific examples I will use in this book may or may not be important twenty
years from now. But the problem of current flow touches on some of the deepest issues
of physics and the concepts we will discuss represent key fundamental concepts of
quantum mechanics and non-equilibrium statistical mechanics that should be relevant
to the analysis and design of nanoscale devices for many years into the future. This
book is written very much in the spirit of a text-book that uses idealized examples to
clarify general principles, rather than a research monograph that does justice to specific
real-world issues.

1 For an interesting description see Lindley (2001).
2 The distance between two atoms is ∼0.25 nm.
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x Preface

Describing the flow of current involves a lot more than just quantum mechanics –
it requires an appreciation of some of the most advanced concepts of non-equilibrium
statistical mechanics. Traditionally these topics are spread out over many physics/
chemistry courses that take many semesters to cover. My aim is to condense the essential
concepts into a book that can be covered in a one-semester graduate course. I have also
used a subset of this material to teach a senior-level undergraduate course. The only
background I will assume is a knowledge of partial differential equations and matrix
algebra including familiarity with Matlab (or an equivalent mathematical software
package).

The first chapter and the appendix are somewhat distinct from the rest of the book,
but they have been included because I believe they should help the reader connect
with the “big picture.” The first chapter motivates the concepts covered in this book by
laying out the factors that enter into a description of quantum transport in terms that are
accessible to a beginner with no background in quantum mechanics. The appendix on
the other hand is intended for the advanced reader and describes the same concepts using
advanced formalism (“second quantization”). Both these chapters have been adapted
from a longer article (Datta, 2004).

When I finished my last book, Electronic Transport in Mesoscopic Systems (ETMS)
(Datta, 1995), I did not think I would want to write another. But ETMS was written in
the early 1990s when quantum transport was a topic of interest mainly to physicists.
Since then, electronic devices have been shrinking steadily to nanometer dimensions
and quantum transport is fast becoming a topic of interest to electrical engineers as
well. I owe it largely to my long-time friend and colleague Mark Lundstrom, that I was
convinced to write this book with an engineering audience in mind. And this change in
the intended audience (though I hope physicists too will find it useful) is reflected in my
use of “q” rather than “e” to denote the electronic charge. However, I have not replaced
“i” with “−j”, since a Schrodinger equation with “−j∂ψ /∂t” just does not look right!

Anyway, this book has more substantial differences with ETMS. ETMS starts from
the effective mass equation, assuming that readers had already seen it in a solid-state
physics course. In this book, I spend Chapters 2 through 7 building up from the hydrogen
atom to E(k) diagrams and effective mass equations. Most importantly, ETMS was
largely about low-bias conductance (“linear response”) and its physical interpretation
for small conductors, emphasizing the transmission formalism. In this book (Chapters 1,
8–11) I have stressed the full current–voltage characteristics and the importance of
performing self-consistent calculations. I have tried to inject appropriate insights from
the transmission formalism, like the Landauer formula and Buttiker probes, but the
emphasis is on the non-equilibrium Green’s function (NEGF) formalism which I believe
provides a rigorous framework for the development of quantum device models that can
be used to benchmark other simplified approaches. It bridges the gap between the fully
coherent quantum transport models of mesoscopic physicists and the fully incoherent
Boltzmann transport models of device physicists.



xi Preface

The NEGF formalism is usually described in the literature using advanced many-
body formalism, but I have tried to make it accessible to a more general audience. In its
simplest form, it reduces to a rate equation for a one-level system that I can teach under-
graduates. And so in this book, I start with the “undergraduate” version in Chapter 1,
develop it into the full matrix version, illustrate it with examples in Chapter 11, and
provide a more formal justification using second quantization in the appendix. This
book thus has a very different flavor from ETMS, which was primarily based on the
transmission formalism with a brief mention of NEGF in the last chapter.

Another important distinction with ETMS is that in this book I have made significant
use of Matlab . I use many numerical examples to provide concrete illustrations and,
for the readers’ convenience, I have listed my Matlab codes at the end of the book,
which can also be downloaded from my website.3 I strongly recommend that readers
set up their own computer program on a personal computer to reproduce the results.
This hands-on experience is needed to grasp such deep and diverse concepts in so short
a time.

Additional problems designed to elaborate on the text material are posted on my
website and I will be glad to share my solutions with interested readers. I plan to add
more problems to this list and welcome readers to share problems of their own with
the rest of the community. I will be happy to facilitate the process by adding links to
relevant websites.

This book has grown out of a graduate course (and recently its undergraduate version)
that I have been teaching for a number of years. The reader may find it useful to
view the videostreamed course lectures, keyed to specific sections of this book, that
are publicly available through the web, thanks to the Purdue University E-enterprise
Center, the NSF Network for Computational Nanotechnology, and the NASA Institute
for Nanoelectronics and Computing.

3 http://dynamo.ecn.purdue.edu/∼datta
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Symbols

Fundamental constants

q electronic charge 1.602 × 10−19 C
h Planck constant 6.626 × 10−34 J s
--h h/2π 1.055 × 10−34 J s
m free electron mass 9.11 × 10−31 kg
ε0 permittivity of free space 8.854 × 10−12 F/m

a0 Bohr radius, 4πε0
--h2/mq2 0.0529 nm

G0 = q2/h conductance quantum 38.7 × 10−6 S (S = 1/� = A/V)
= 1/(25.8 × 103 �)

We will use rationalized MKS units throughout the book, with energy in electron-volts:
1 eV = 1.602 × 10−19 J.

E0 q2/8πε0a0 13.6 eV

Some of the other symbols used

Units
I current (external) amperes (A)
J current (internal) amperes (A)
V voltage volts (V)
R resistance ohms (� = V/A)
G conductance siemens (S = A/V)
a lattice constant meters (m)

t0
--h2/2m*a2 electron-volts (eV)

t time seconds (s)
m* effective mass kilograms (kg)
mc conduction band effective mass kilograms (kg)
γ 1, 2, 3 Luttinger parameters dimensionless
εr relative permittivity dimensionless
�F electric field V/m

L channel length m
S cross-sectional area m2

xiii



xiv Symbols

�k wavevector /m
�v velocity m/s
nS electron density per unit area /m2

nL electron density per unit length /m
N number of electrons or number of photons dimensionless
ρ density matrix dimensionless
ε energy level eV
H Hamiltonian eV
U self-consistent potential eV
E energy eV
µ electrochemical potential eV
f(E) Fermi function dimensionless
n(E) electron density per unit energy /eV
D(E) density of states (DOS) /eV
A(E) spectral function /eV
Gn(E) (same as −iG<) correlation function /eV
Gp(E) (same as +iG>) hole correlation function /eV
G(E) Green’s function (retarded) /eV

T (E) transmission function dimensionless
T(E) transmission probability (<1) dimensionless
γ , �(E) broadening eV
	(E) self-energy (retarded) eV
	in(E) (same as −i	<) inscattering eV

ϑ(E) unit step function

{
= 1, E > 0
= 0, E < 0

dimensionless

δ(E) Dirac delta function /eV

δnm Kronecker delta

{
= 1, n = m
= 0, n �= m

dimensionless

t Superscript to denote conjugate transpose
T Superscript to denote transpose



1 Prologue: an atomistic view of
electrical resistance

Let me start with a brief explanation since this is not a typical “prologue.” For one it
is too long, indeed as long as the average chapter. The reason for this is that I have
a very broad objective in mind, namely to review all the relevant concepts needed to
understand current flow through a very small object that has only one energy level in
the energy range of interest. Remarkably enough, this can be done without invoking
any significant background in quantum mechanics. What requires serious quantum
mechanics is to understand where the energy levels come from and to describe large
conductors with multiple energy levels. Before we get lost in these details (and we
have the whole book for it!) it is useful to understand the factors that influence the
current–voltage relation of a really small object.

This “bottom-up” view is different from the standard “top-down” approach to elec-
trical resistance. We start in college by learning that the conductance G (inverse of
the resistance) of a large macroscopic conductor is directly proportional to its cross-
sectional area A and inversely proportional to its length L:

G = σ A/L (Ohm’s law)

where the conductivity σ is a material property of the conductor. Years later in graduate
school we learn about the factors that determine the conductivity and if we stick around
long enough we eventually talk about what happens when the conductor is so small that
one cannot define its conductivity. I believe the reason for this “top-down” approach
is historical. Till recently, no one was sure how to describe the conductance of a really
small object, or if it even made sense to talk about the conductance of something really
small. To measure the conductance of anything we need to attach two large contact
pads to it, across which a battery can be connected. No one knew how to attach contact
pads to a small molecule till the late twentieth century, and so no one knew what the
conductance of a really small object was. But now that we are able to do so, the answers
look fairly simple, except for unusual things like the Kondo effect that are seen only for
a special range of parameters. Of course, it is quite likely that many new effects will be
discovered as we experiment more on small conductors and the description presented
here is certainly not intended to be the last word. But I think it should be the “first

1



2 Prologue: an atomistic view of electrical resistance
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Fig. 1.1 Sketch of a nanoscale field effect transistor. The insulator should be thick enough to
ensure that no current flows into the gate terminal, but thin enough to ensure that the gate voltage
can control the electron density in the channel.

word” since the traditional top-down approach tends to obscure the simple physics of
very small conductors.

The generic structure I will often use is a simple version of a “nanotransistor” con-
sisting of a semiconducting channel separated by an insulator layer (typically silicon
dioxide) from the metallic gate (Fig. 1.1). The regions marked source and drain are
the two contact pads, which are assumed to be highly conducting. The resistance of
the channel determines the current that flows from the source to the drain when a voltage
VD is applied between them. The voltage VG on the gate is used to control the electron
density in the channel and hence its resistance. Such a voltage-controlled resistor is the
essence of any field effect transistor (FET) although the details differ from one version
to another. The channel length L has been progressively reduced from ∼10 µm in 1960
to ∼0.1 µm in 2000, allowing circuit designers to pack (100)2 = 10 000 times more
transistors (and hence that much more computing power) into a chip of given surface
area. This increase in packing density is at the heart of the computer revolution. How
much longer can the downscaling continue? No one really knows. However, one thing
seems certain. Regardless of what form future electronic devices take, we will have to
learn how to model and describe the electronic properties of device structures that are
engineered on an atomic scale. The examples I will use in this book may or may not be
important twenty years from now. But the problem of current flow touches on some of
the deepest issues of physics related to the nature of “friction” on a microscopic scale
and the emergence of irreversibility from reversible laws. The concepts we will dis-
cuss represent key fundamental concepts of quantum mechanics and non-equilibrium



3 1.1 Energy level diagram

statistical mechanics that should be relevant to the analysis and design of nanoscale
devices for many years into the future.
Outline: To model the flow of current, the first step is to draw an equilibrium energy
level diagram and locate the electrochemical potential µ (also called the Fermi level or
Fermi energy) set by the source and drain contacts (Section 1.1). Current flows when an
external device such as a battery maintains the two contacts at different electrochemical
potentials µ1 and µ2, driving the channel into a non-equilibrium state (Section 1.2).
The current through a really small device with only one energy level in the range of
interest is easily calculated and, as we might expect, depends on the quality of the
contacts. But what is not obvious (and was not appreciated before the late 1980s) is
that there is a maximum conductance for a channel with one level (in the energy range
of interest), which is a fundamental constant related to the charge on an electron and
Planck’s constant:

G0 ≡ q2/h = 38.7 µS = (25.8 k�)−1 (1.1)

Actually small channels typically have two levels (one for up spin and one for down
spin) at the same energy (“degenerate” levels) making the maximum conductance equal
to 2G0. We can always measure conductances lower than this, if the contacts are bad.
But the point is that there is an upper limit to the conductance that can be achieved
even with the most perfect of contacts (Section 1.3). In Section 1.4, I will explain the
important role played by charging and electrostatics in determining the shape of the
current–voltage (I–V) characteristics, and how this aspect is coupled with the equations
for quantum transport. Once this aspect has been incorporated we have all the basic
physics needed to describe a one-level channel that is coupled “well” to the contacts.
But if the channel is weakly coupled, there is some additional physics that I will discuss
in Section 1.5. Finally, in Section 1.6, I will explain how the one-level description is
extended to larger devices with multiple energy levels, eventually leading to Ohm’s law.
It is this extension to larger devices that requires the advanced concepts of quantum
statistical mechanics that constitute the subject matter of the rest of this book.

1.1 Energy level diagram

Figure 1.1.1 shows the typical current–voltage characteristics for a well-designed tran-
sistor of the type shown in Fig. 1.1 having a width of 1 µm in the y-direction perpendic-
ular to the plane of the paper. At low gate voltages, the transistor is in its off state, and
very little current flows in response to a drain voltage VD. Beyond a certain gate voltage,
called the threshold voltage VT, the transistor is turned on and the ON-current increases
with increasing gate voltage VG. For a fixed gate voltage, the current I increases at first
with drain voltage, but it then tends to level off and saturate at a value referred to as the
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Fig. 1.1.1 (a) Drain current I as a function of the gate voltage VG for different values of the drain
voltage VD. (b) Drain current as a function of the drain voltage for different values of the gate
voltage.

ON-current. Let us start by trying to understand why the current increases when the
gate voltage exceeds VT (Fig. 1.1.1a).

The first step in understanding the operation of any inhomogeneous device structure
(like the generic one shown in Fig. 1.1) is to draw an equilibrium energy level diagram
(sometimes called a “band diagram”) assuming that there is no voltage applied between
the source and the drain. Electrons in a semiconductor occupy a set of energy levels
that form bands as sketched in Fig. 1.1.2. Experimentally, one way to measure the
occupied energy levels is to find the minimum energy of a photon required to knock
an electron out into vacuum (photoemission (PE) experiments). We can describe the
process symbolically as

S + hν → S+ + e−

where “S” stands for the semiconductor device (or any material for that matter!).
The empty levels, of course, cannot be measured the same way since there is no

electron to knock out. We need an inverse photoemission (IPE) experiment where an
incident electron is absorbed with the emission of photons:

S + e− → S−+hν

Other experiments like optical absorption also provide information regarding energy
levels. All these experiments would be equivalent if electrons did not interact with each
other and we could knock one electron around without affecting everything else around
it. But in the real world subtle considerations are needed to relate the measured energies
to those we use and we will discuss some of these issues in Chapter 2.

We will assume that the large contact regions (labeled source and drain in Fig. 1.1)
have a continuous distribution of states. This is true if the contacts are metallic, but not
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Channel energy levels with

Fig. 1.1.2 Allowed energy levels that can be occupied by electrons in the active region of a device
like the channel in Fig. 1.1. A positive gate voltage VG moves the energy levels down while the
electrochemical potential µ is fixed by the source and drain contacts, which are assumed to be in
equilibrium with each other (VD = 0).

exactly true of semiconducting contacts, and interesting effects like a decrease in the
current with an increase in the voltage (sometimes referred to as negative differential
resistance (NDR)) can arise as a result (see Exercise E.1.4); however, we will ignore
this possibility in our discussion. The allowed states are occupied up to some energy
µ (called the electrochemical potential) which too can be located using photoemission
measurements. The work function is defined as the minimum energy of a photon needed
to knock a photoelectron out of the metal and it tells us how far below the vacuum level
µ is located.

Fermi function: If the source and drain regions are coupled to the channel (with
VD held at zero), then electrons will flow in and out of the device bringing them all
in equilibrium with a common electrochemical potential, µ, just as two materials in
equilibrium acquire a common temperature, T. In this equilibrium state, the average
(over time) number of electrons in any energy level is typically not an integer, but is
given by the Fermi function:

f0(E − µ) = 1

1 + exp[(E − µ)/kBT ]
(1.1.1)

Energy levels far below µ are always full so that f0 = 1, while energy levels far
above µ are always empty with f0 = 0. Energy levels within a few kBT of µ are
occasionally empty and occasionally full so that the average number of electrons lies
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Fig. 1.1.3 The Fermi function (Eq. (1.1.1)) describing the number of electrons occupying a state
with an energy E if it is in equilibrium with a large contact (“reservoir”) having an electrochemical
potential µ.

between 0 and 1: 0 ≤ f0 ≤ 1 (Fig. 1.1.3). Note that this number cannot exceed one
because the exclusion principle forbids more than one electron per level.

n-type operation: A positive gate voltage VG applied to the gate lowers the energy
levels in the channel. However, the energy levels in the source and drain contacts
are unchanged and hence the electrochemical potential µ (which must be the same
everywhere) remains unaffected. As a result the energy levels move with respect to
µ, driving µ into the empty band as shown in Fig. 1.1.2. This makes the channel
more conductive and turns the transistor ON, since, as we will see in the next section,
the current flow under bias depends on the number of energy levels available around
E =µ. The threshold gate voltage VT needed to turn the transistor ON is thus determined
by the energy difference between the equilibrium electrochemical potential µ and the
lowest available empty state (Fig. 1.1.2) or what is called the conduction band edge.

p-type operation: Note that the number of electrons in the channel is not what deter-
mines the current flow. A negative gate voltage (VG < 0), for example, reduces the
number of electrons in the channel. Nevertheless the channel will become more con-
ductive once the electrochemical potential is driven into the filled band as shown in
Fig. 1.1.4, due to the availability of states (filled or otherwise) around E = µ. This
is an example of p-type or “hole” conduction as opposed to the example of n-type or
electron conduction shown in Fig. 1.1.2. The point is that for current flow to occur,
states are needed near E = µ, but they need not be empty states. Filled states are just
as good and it is not possible to tell from this experiment whether conduction is n-type
(Fig. 1.1.2) or p-type (Fig. 1.1.4). This point should become clearer in Section 1.2 when
we discuss why current flows in response to a voltage applied across the source and
drain contacts.
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VG < 0Empty
states

Filled
states

m
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Channel energy  levels with 

Fig. 1.1.4 Example of p-type or hole conduction. A negative gate voltage (VG < 0) reduces the
number of electrons in the channel. Nevertheless the channel will become more conductive once
the electrochemical potential µ is driven into the filled band since conduction depends on the
availability of states around E = µ and not on the total number of electrons.

Figures 1.1.2 and 1.1.4 suggest that the same device can be operated as an n-type
or a p-type device simply by reversing the polarity of the gate voltage. This is true
for short devices if the contacts have a continuous distribution of states as we have
assumed. But in general this need not be so: for example, long devices can build up
“depletion layers” near the contacts whose shape can be different for n- and p-type
devices.

1.2 What makes electrons flow?

We have stated that conduction depends on the availability of states around E = µ; it
does not matter if they are empty or filled. To understand why, let us consider what
makes electrons flow from the source to the drain. The battery lowers the energy levels
in the drain contact with respect to the source contact (assuming VD to be positive) and
maintains them at distinct electrochemical potentials separated by qVD

µ1 − µ2 = qVD (1.2.1)

giving rise to two different Fermi functions:

f1(E) ≡ 1

1 + exp[(E − µ1)/kBT ]
= f0(E − µ1) (1.2.2a)

f2(E) ≡ 1

1 + exp[(E − µ2)/kBT ]
= f0(E − µ2) (1.2.2b)

Each contact seeks to bring the channel into equilibrium with itself. The source keeps
pumping electrons into it, hoping to establish equilibrium. But equilibrium is never
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Fig. 1.2.1 A positive voltage Vd applied to the drain with respect to the source lowers the
electrochemical potential at the drain: µ2 = µ1 − qVD. Source and drain contacts now attempt to
impose different Fermi distributions as shown, and the channel goes into a state intermediate
between the two.

achieved as the drain keeps pulling electrons out in its bid to establish equilibrium
with itself. The channel is thus forced into a balancing act between two reservoirs with
different agendas and this sends it into a non-equilibrium state intermediate between
what the source would like to see and what the drain would like to see (Fig. 1.2.1).

Rate equations for a one-level model: This balancing act is easy to see if we con-
sider a simple one-level system, biased such that its energy ε lies between the elec-
trochemical potentials in the two contacts (Fig. 1.2.2). Contact 1 would like to see
f1(ε) electrons, while contact 2 would like to see f2(ε) electrons occupying the state
where f1 and f2 are the source and drain Fermi functions defined in Eq. (1.2.2). The
average number of electrons N at steady state will be something intermediate between
f1(ε) and f2(ε). There is a net flux I1 across the left junction that is proportional to
( f1 − N), dropping the argument ε for clarity:

I1 = q γ1
--h

( f1 − N ) (1.2.3a)

where −q is the charge per electron. Similarly the net flux I2 across the right junction
is proportional to ( f2 − N) and can be written as

I2 = q γ2
--h

( f2 − N ) (1.2.3b)

We can interpret the rate constants γ1/--h and γ2/--h as the rates at which an electron
placed initially in the level ε will escape into the source and drain contacts respec-
tively. In principle, we could experimentally measure these quantities, which have the
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γ1N /h h/2 Nγ

N

I
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I

ε
Drain

Source

Fig. 1.2.2 Flux of electrons into and out of a one-level channel at the source and drain ends:
simple rate equation picture.

dimension per second, so that γ1 and γ 2 have the dimension of energy. At the end of this
section I will say a few more words about the physics behind these equations. But for
the moment, let us work out the consequences.

Current in a one-level model: At steady state there is no net flux into or out of the
channel, I1 + I2 = 0, so that from Eqs. (1.2.3a, b) we obtain the reasonable result

N = γ1 f1 + γ2 f2

γ1 + γ2
(1.2.4)

that is, the occupation N is a weighted average of what contacts 1 and 2 would like to
see. Substituting this result into Eq. (1.2.3a) or (1.2.3b) we obtain an expression for the
steady-state current:

I = I1 = −I2 = q
--h

γ1γ2

γ1 + γ2
[ f1(ε) − f2(ε)] (1.2.5)

This is the current per spin. We should multiply it by two if there are two spin states
with the same energy.

This simple result serves to illustrate certain basic facts about the process of current
flow. Firstly, no current will flow if f1(ε) = f2(ε). A level that is way below both
electrochemical potentials µ1 and µ2 will have f1(ε) = f2(ε) = 1 and will not contribute
to the current, just like a level that is way above both potentials µ1 and µ2 and has
f1(ε) = f2(ε) = 0. It is only when the level lies within a few kBT of the potentials µ1

and µ2 that we have f1(ε) �= f2(ε) and a current flows. Current flow is thus the result of
the “difference in agenda” between the contacts. Contact 1 keeps pumping in electrons
striving to bring the number up from N to f1, while contact 2 keeps pulling them out
striving to bring it down to f2. The net effect is a continuous transfer of electrons from
contact 1 to 2 corresponding to a current I in the external circuit (Fig. 1.2.2). Note that
the current is in a direction opposite to that of the flux of electrons, since electrons have
negative charge.
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It should now be clear why the process of conduction requires the presence of states
around E = µ. It does not matter if the states are empty (n-type, Fig. 1.1.2) or filled
(p-type, Fig. 1.1.4) in equilibrium, before a drain voltage is applied. With empty states,
electrons are first injected by the negative contact and subsequently collected by the
positive contact. With filled states, electrons are first collected by the positive contact
and subsequently refilled by the negative contact. Either way, we have current flowing
in the external circuit in the same direction.

Inflow/outflow: Eqs. (1.2.3a, b) look elementary and I seldom hear anyone question
them. But they hide many subtle issues that could bother more advanced readers and
so I feel obliged to mention these issues briefly. I realize that I run the risk of confusing
“satisfied” readers who may want to skip the rest of this section.

The right-hand sides of Eqs. (1.2.3a, b) can be interpreted as the difference between
the influx and the outflux from the source and drain respectively (see Fig. 1.2.2).
For example, consider the source. The outflux of γ1 N/--h is easy to justify since γ1/--h
represents the rate at which an electron placed initially in the level ε will escape into the
source contact. But the influx γ1 f1/--h is harder to justify since there are many electrons
in many states in the contacts, all seeking to fill up one state inside the channel and it is
not obvious how to sum up the inflow from all these states. A convenient approach is
to use a thermodynamic argument as follows. If the channel were in equilibrium with
the source, there would be no net flux, so that the influx would equal the outflux. But
the outflux under equilibrium conditions would equal γ1 f1/--h since N would equal f1.
Under non-equilibrium conditions, N differs from f1 but the influx remains unchanged
since it depends only on the condition in the contacts which remains unchanged (note
that the outflux does change giving a net current that we have calculated above).

“Pauli blocking”? Advanced readers may disagree with the statement I just made,
namely that the influx “depends only on the condition in the contacts.” Shouldn’t the
influx be reduced by the presence of electrons in the channel due to the exclusion
principle (“Pauli blocking”)? Specifically one could argue that the inflow and outflow
(at the source contact) be identified respectively as

γ1 f1(1 − N ) and γ1 N (1 − f1)

instead of

γ1 f1 and γ1 N

as we have indicated in Fig. 1.2.2. It is easy to see that the net current given by the
difference between inflow and outflow is the same in either case, so that the argu-
ment might appear “academic.” What is not academic, however, is the level broaden-
ing that accompanies the process of coupling to the contacts, something we need to
include in order to get quantitatively correct results (as we will see in the next section).
I have chosen to define inflow and outflow in such a way that the outflow per electron
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(γ1 = γ1 N/N ) is equal to the broadening (in addition to their difference being equal
to the net current). Whether this broadening (due to the source) is γ1 or γ1(1 − f1) or
something else is not an academic question. It can be shown that as long as energy
relaxing or inelastic interactions are not involved in the inflow/outflow process, the
broadening is γ1, independent of the occupation factor f1 in the contact. We will discuss
this point a little further in Chapters 9 and 10, but a proper treatment requires advanced
formalism as described in the appendix.

1.3 The quantum of conductance

Consider a device with a small voltage applied across it causing a splitting of the source
and drain electrochemical potentials (Fig. 1.3.1a). We can write the current through this
device from Eq. (1.2.5) and simplify it by assuming µ1 > ε > µ2 and the temperature
is low enough that f1(ε) ≡ f0(ε − µ1) ≈ 1 and f2(ε) ≡ f0(ε − µ2) ≈ 0:

I = q
--h

γ1γ2

γ1 + γ2
= qγ1

2--h
if γ2 = γ1 (1.3.1a)

This suggests that we could pump unlimited current through this one-level device
by increasing γ1 (= γ 2), that is by coupling it more and more strongly to the con-
tacts. However, one of the seminal results of mesoscopic physics is that the maxi-
mum conductance of a one-level device is equal to G0 (see Eq. (1.1)). What have we
missed?

What we have missed is the broadening of the level that inevitably accompanies any
process of coupling to it. This causes part of the energy level to spread outside the energy
range between µ1 and µ2 where current flows. The actual current is then reduced below
what we expect from Eq. (1.3.1a) by a factor (µ1 − µ2)/Cγ1 representing the fraction

I

V

I

εSource
Drain

µ1
µ2

(a)

µ2

µ1

I

V

I

Broadened energy
level

Source
Drain

(b)

Fig. 1.3.1 (a) A channel with a small voltage applied across it causing a splitting of the source and
drain electrochemical potentials µ1 > ε > µ2. (b) The process of coupling to the channel inevitably
broadens the level, thereby spreading part of the energy level outside the energy range between µ1

and µ2 where current flows.
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E 

xSource        Channel          Drain 

(a)

E 

xSource        Channel          Drain 

(b)

Fig. 1.3.2

of the level that lies in the window between µ1 and µ2, where Cγ1 is the effective
width of the level, C being a numerical constant. Since µ1 − µ2 = qVD, we see from
Eq. (1.3.1b)

I = qγ1

2--h

qVD

Cγ1
→ G = I

VD
= q2

2C--h
(1.3.1b)

that the conductance indeed approaches a constant value independent of the strength
of the coupling (γ1 = γ 2) to the contacts. We will now carry out this calculation a little
more quantitatively so as to obtain a better estimate for C.

One way to understand this broadening is to note that, before we couple the channel
to the source and the drain, the density of states (DOS) D(E) looks something like
Fig. 1.3.2a (dark indicates a high DOS). We have one sharp level in the channel and a
continuous distribution of states in the source and drain contacts. On coupling, these
states “spill over”: the channel “loses” part of its state as it spreads into the contacts,
but it also “gains” part of the contact states that spread into the channel. Since the loss
occurs at a fixed energy while the gain is spread out over a range of energies, the overall
effect is to broaden the channel DOS from its initial sharp structure (Fig. 1.3.2a) into a
more diffuse structure (Fig. 1.3.2b). In Chapter 8 we will see that there is a “sum rule”
that requires the loss to be exactly offset by the gain. Integrated over all energy, the
level can still hold only one electron. The broadened DOS could in principle have any
shape, but in the simplest situation it is described by a Lorentzian function centered
around E = ε (whose integral over all energy is equal to one):

Dε(E) = γ /2π

(E − ε)2 + (γ /2)2 (1.3.2)

The initial delta function can be represented as the limiting case of Dε(E) as the
broadening tends to zero: γ → 0 (Fig. 1.3.3). The broadening γ is proportional to the
strength of the coupling as we might expect. Indeed it turns out that γ = γ1 + γ2, where
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Fig. 1.3.3 An energy level at E = ε is broadened into a continuous density of states Dε(E) by
the process of coupling to the contacts. Dε(E) curves for two different values of coupling γ

with ε = 0 eV are shown.

γ1/--h and γ2/--h are the escape rates introduced in Section 1.2. This will come out of our
quantum mechanical treatment in Chapter 8, but at this stage we could rationalize it as
a consequence of the “uncertainty principle” that requires the product of the lifetime
(= --h/γ ) of a state and its spread in energy (γ ) to equal --h. Note that in general the
lineshape need not be Lorentzian and this is usually reflected in an energy-dependent
broadening γ (E).

Anyway, the bottom line is that the coupling to the contacts broadens a single discrete
energy level into a continuous density of states given by Eq. (1.3.2) and we can include
this effect by modifying our expression for the current (Eq. (1.2.5))

I = q
--h

γ1γ2

γ1 + γ2
[ f1(ε) − f2(ε)]

to integrate (that is, sum) over a distribution of states, Dε(E) dE :

I = q
--h

+∞∫
−∞

dE Dε(E)
γ1γ2

γ1 + γ2
[ f1(E) − f2(E)] (1.3.3)

At low temperatures, we can write

f1(E) − f2(E) = 1 if µ1 > E > µ2

= 0 otherwise

so that the current is given by

I = q
--h

γ1γ2

γ1 + γ2

µ1∫
µ2

dE Dε(E)
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If the bias is small enough that we can assume the DOS to be constant over the range
µ1 > E > µ2, we can use Eq. (1.3.2) to write

I = q
--h

γ1γ2

γ1 + γ2
(µ1 − µ2)

(γ1 + γ2)/2π

(µ − ε)2 + (γ1 + γ2)2

The maximum current is obtained if the energy level ε coincides with µ, the average
of µ1 and µ2. Noting that µ1 − µ2 = qVD, we can write the maximum conductance as

G ≡ I

VD
= q2

h

4γ1γ2

(γ1 + γ2)2 = q2

h
if γ1 = γ2

Equation (1.3.3) for the current extends our earlier result in Eq. (1.2.5) to include
the effect of broadening. Similarly, we can extend the expression for the number of
electrons N (see Eq. (1.2.4))

N = γ1 f1(ε) + γ2 f2(ε)

γ1 + γ2

to account for the broadened DOS:

N =
+∞∫

−∞
dE Dε(E)

γ1 f1(E) + γ2 f2(E)

γ1 + γ2
(1.3.4)

1.4 Potential profile

Physicists often focus on the low-bias conductance (“linear response”), which is deter-
mined solely by the properties of the energy levels around the equilibrium electro-
chemical potential µ. What is not widely appreciated is that this is not enough if we
are interested in the full current–voltage characteristics. It is then important to pay
attention to the actual potential inside the channel in response to the voltages applied
to the external electrodes (source, drain, and gate). To see this, consider a one-level
channel with an equilibrium electrochemical potential µ located slightly above the
energy level ε as shown in Fig. 1.4.1. When we apply a voltage between the source and
drain, the electrochemical potentials separate by qV : µ1 − µ2 = qV . We know that a
current flows (at low temperatures) only if the level ε lies between µ1 and µ2. Depend-
ing on how the energy level ε is affected by the applied voltage, we have different
possibilities.

If we ignore the gate we might expect the potential in the channel to lie halfway
between the source and the drain, ε → ε − (V/2), leading to Fig. 1.4.2 for positive and
negative voltages (note that we are assuming the source potential to be held constant,
relative to which the other potentials are changing). It is apparent that the energy level



15 1.4 Potential profile

µ µ

V = 0

ε

VG

Gate

Source Drain

Fig. 1.4.1

(a) V > 0     (b) V < 0

µ1
µ2

I

V

I

VG

Gate

ε − ( / )V 2

µ1

I

V

I

ε − ( / )V 2
Source

Drain
Drain

VG

Gate

µ2
Source

Fig. 1.4.2 Energy level diagram under (a) forward (V > 0) and (b) reverse (V < 0) bias, assuming
that the channel potential lies halfway between the source and the drain.
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II
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Fig. 1.4.3 Energy level diagram under (a) forward (V > 0) and (b) reverse (V < 0) bias assuming
that the channel potential remains fixed with respect to the source.

lies halfway between µ1 and µ2 for either bias polarity (V > 0 or V < 0), leading to
equal magnitudes for +V and −V.

A different picture emerges if we assume that the gate is so closely coupled to the
channel that the energy level follows the gate potential and is unaffected by the drain
voltage or, in other words, ε remains fixed with respect to the source (Fig. 1.4.3).
In this case the energy level lies between µ1 and µ2 for positive bias (V > 0) but
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Fig. 1.4.4 A simple capacitive circuit model for the “Laplace” potential UL of the active region in
response to the external gate and drain voltages, VG and VD. The total capacitance is denoted CE,
where E stands for electrostatic. The actual potential U can be different from UL if there is a
significant density of electronic states in the energy range around µ1 and µ2.

not for negative bias (V < 0), leading to a current–voltage characteristic that can
be very asymmetric in V. Clearly the shape of the current–voltage characteristic is
affected strongly by the potential profile and even the simplest model needs to account
for it.

So how do we calculate the potential inside the channel? If the channel were an
insulator, we could solve Laplace’s equation (εr is the relative permittivity, which could
be spatially varying)

�∇ · (εr �∇V ) = 0

subject to the boundary conditions that V=0 (source electrode), V=VG (gate electrode),
and V = VD (drain electrode). We could visualize the solution to this equation in terms
of the capacitive circuit model shown in Fig. 1.4.4, if we treat the channel as a single
point ignoring any spatial variation of the potential inside it.

The potential energy in the channel is obtained by multiplying the electrostatic
potential V by the electronic charge −q:

UL = CG

CE
(−qVG) + CD

CE
(−qVD) (1.4.1a)

Here we have labeled the potential energy with a subscript L as a reminder that it is
calculated from the Laplace equation ignoring any change in the electronic charge,
which is justified if there are very few electronic states in the energy range around µ1

and µ2. Otherwise there is a change �ρ in the electron density in the channel and we
need to solve the Poisson equation

�∇ · (εr �∇V ) = −�ρ/ε0
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for the potential. In terms of our capacitive circuit model, we could write the change in
the charge as a sum of the charges on the three capacitors:

−q�N = CSV + CG(V − VG) + CD(V − VD)

so that the potential energy U = −qV is given by the sum of the Laplace potential and
an additional term proportional to the change in the number of electrons:

U = UL + q2

CE
�N (1.4.1b)

The constant q2/CE ≡ U0 tells us the change in the potential energy due to one extra
electron and is called the single-electron charging energy, whose significance we will
discuss further in the next section. The change �N in the number of electrons is
calculated with respect to the reference number of electrons, originally in the channel,
N0, corresponding to which the energy level is believed to be located at ε.

Iterative procedure for self-consistent solution: For a small device, the effect of the
potential U is to raise the DOS in energy and can be included in our expressions for the
number of electrons N (Eq. (1.3.4)) and the current I (Eq. (1.3.3)) in a straightforward
manner:

N =
+∞∫

−∞
dE Dε(E − U )

γ1 f1(E) + γ2 f2(E)

γ1 + γ2
(1.4.2)

I = q
--h

+∞∫
−∞

dE Dε(E − U )
γ1γ2

γ1 + γ2
[ f1(E) − f2(E)] (1.4.3)

Equation (1.4.2) has a U appearing on its right-hand side, which in turn is a function
of N through the electrostatic relation (Eq. (1.4.1b)). This requires a simultaneous or
“self-consistent” solution of the two equations which is usually carried out using the
iterative procedure depicted in Fig. 1.4.5.

 

Current I , Eq. (1.4.3)

Electrostatic

Transport

Converged U

Transport 

N      U , Eqs. (1.4.1a, b)

U      N , Eq. (1.4.2) 

Self-consistent
Calculation

Fig. 1.4.5 Iterative procedure for calculating N and U self-consistently.
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Fig. 1.4.6 (a) Current vs. voltage calculated using the SCF method (Fig. 1.4.5) with µ = 0,
ε = 0.2 eV, VG = 0, kBT = 0.025 eV, U0 = 0.025 eV, CD/CE = 0.5, and γ1 = γ 2 = 0.005 eV.
(b) Number of electrons vs. voltage calculated using the SCF method (Fig. 1.4.5) with same
parameters as in (a).

We start with an initial guess for U, calculate N from Eq. (1.4.2) with Dε(E) given by
Eq. (1.3.2), calculate an appropriate U from Eq. (1.4.1b), with UL given by Eq. (1.4.1a)
and compare with our starting guess for U. If this new U is not sufficiently close to our
original guess, we revise our guess using a suitable algorithm, say something like

Unew = Uold + α − Uold)(Ucalc

New guess Old guess Calculated

(1.4.4)

where α is a positive number (typically < 1) that is adjusted to be as large as possible
without causing the solution to diverge (which is manifested as an increase in Ucalc −
Uold from one iteration to the next). The iterative process has to be repeated till we
find a U that yields an N that leads to a new U which is sufficiently close (say within a
fraction of kBT ) to the original value. Once a converged U has been found, the current
can be calculated from Eq. (1.4.3).

Figure 1.4.6 shows the current I and the number of electrons N calculated as a function
of the applied drain voltage using the self-consistent field (SCF) method shown in
Fig. 1.4.5.

1.5 Coulomb blockade

The charging model based on the Poisson equation represents a good zero-order approx-
imation (sometimes called the Hartree approximation) to the problem of electron–
electron interactions, but it is generally recognized that it tends to overestimate the
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Fig. 1.5.1 A channel with two spin-degenerate levels containing one electron is expected to have
an equilibrium electrochemical potential that lies in the center of its broadened density of states, so
that current should flow easily under bias (γ = 0.05 eV).

effect and may need to be corrected (the so-called exchange and correlation effects).
Discovering an appropriate function U(N) (if there is one!) to replace our simple result
(cf. Eq. (1.4.1b))

U (N ) = q2(N − N0)/CE

is arguably one of the central topics in many-electron physics and can in some cases
give rise to profound effects like magnetism, which are largely outside the scope of this
book. However, there is one aspect that I would like to mention right away, since it can
affect our picture of current flow even for a simple one-level device and put it in the
so-called Coulomb blockade or single-electron charging regime. Let me explain what
this means.

Energy levels come in pairs, one up-spin and one down-spin, which are degenerate,
that is they have the same energy. Usually this simply means that all our results have to
be multiplied by two. Even the smallest device has two levels rather than one, and its
maximum conductance will be twice the conductance quantum G0 ≡ q2/h discussed
earlier. The expressions for the number of electrons and the current should all be
multiplied by two. However, there is a less trivial consequence that I would like to
explain.

Consider a channel with two spin-degenerate levels (Fig. 1.5.1), containing one
electron when neutral (N0 = 1). We expect the broadened DOS to be twice our previous
result (see Eq. (1.3.2))

Dε(E) = 2 (for spin) × γ /2π

(E − ε)2 + (γ /2)2 (1.5.1)

where the total broadening is the sum of those due to each of the two contacts individu-
ally: γ = γ1 + γ2, as before. Since the available states are only half filled for a neutral



20 Prologue: an atomistic view of electrical resistance

0 10 20 30
−0.5

0

0.5

 D (E)  

 E
 (

eV
) 

 

0 10 20 30 40 50 60
−0.5

0

0.5

 D (E)  

 E
 (

eV
)

 

m2

40

m1

U0

Fig. 1.5.2 Under certain conditions, the up-spin and down-spin density of states splits into two
parts separated by the single-electron charging energy, U0, instead of one single degenerate peak as
shown in Fig. 1.5.1 (γ = 0.05 eV, U0 = 0.25 eV).

channel, the electrochemical potential will lie exactly in the middle of the broadened
DOS, so that we would expect a lot of current to flow when a bias is applied to split the
electrochemical potentials in the source and drain as shown.

However, under certain conditions the DOS looks like one of the two possibilities
shown in Fig. 1.5.2. The up-spin and the down-spin density of states splits into two
parts separated by the single-electron charging energy

U0 ≡ q2/CE (1.5.2)

Very little current flows when we apply a small bias since there are hardly any states
between µ1 and µ2 and this “Coulomb blockade” has been experimentally observed
for systems where the charging energy U0 exceeds the broadening γ .

It is hard to understand why the two peaks should separate based on the simple
SCF picture. Two peaks with the same energy (“degenerate”) should always remain
degenerate as long as they feel the same self-consistent potential U. The point is that
no electron feels any potential due to itself. Suppose the up-spin level gets filled first,
causing the down-spin level to float up by U0. But the up-spin level does not float up
because it does not feel any self-interaction, leading to the picture shown on the left in
Fig. 1.5.2. Of course, it is just as likely that the down-spin will fill up first leading to
the picture on the right. In either case the DOS near µ is suppressed relative to the SCF
picture (Fig. 1.5.1).

Describing the flow of current in this Coulomb blockade regime requires a very
different point of view that we will not discuss in this book, except briefly in
Section 3.4. But when do we have to worry about Coulomb blockade effects? Answer:
only if U0 exceeds both kBT and γ (= γ1 + γ 2). Otherwise, the SCF method will give
results that look much like those obtained from the correct treatment (see Fig. 3.4.3).
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So what determines U0? Answer: the extent of the electronic wavefunction. If we smear
out one electron over the surface of a sphere of radius R, then we know from freshman
physics that the potential of the sphere will be q/4πεrε0 R, so that the energy needed
to put another electron on the sphere will be q2/4πεrε0 R ∼= U0, which is ∼0.025 eV if
R = 5 nm and εr = 10. Levels with well-delocalized wavefunctions (large R) have a
very small U0 and the SCF method provides an acceptable description even at the lowest
temperatures of interest. But if R is small, then the charging energy U0 can exceed kBT
and one could be in a regime dominated by single-electron charging effects that is not
described well by the SCF method.

1.6 Towards Ohm’s law

Now that we have discussed the basic physics of electrical conduction through small
conductors, let us talk about the new factors that arise when we have large conduc-
tors. In describing electronic conduction through small conductors we can identify the
following three regimes.
� Self-consistent field (SCF) regime. If kBT and/or γ is comparable to U0, we can use

the SCF method described in Section 1.4.
� Coulomb blockade (CB) regime. If U0 is well in excess of both kBT and γ , the SCF

method is not adequate. More correctly, one could use (if practicable) the multi-
electron master equation that we will discuss in Section 3.4.

� Intermediate regime. If U0 is comparable to the larger of kBT and γ , there is no
simple approach: the SCF method does not do justice to the charging, while the
master equation does not do justice to the broadening.

It is generally recognized that the intermediate regime can lead to novel physics that
requires advanced concepts, even for the small conductors that we have been dis-
cussing. For example, experimentalists have seen evidence for the Kondo effect, which
is reflected as an extra peak in the density of states around E = µ in addition to the two
peaks (separated by U0) that are shown in Fig. 1.5.2.

With large conductors too we can envision three regimes of transport that evolve
out of these three regimes. We could view a large conductor as an array of unit cells
as shown in Fig. 1.6.1. The inter-unit coupling energy t has an effect somewhat (but
not exactly) similar to the broadening γ that we have associated with the contacts. If
t ≥ U0, the overall conduction will be in the SCF regime and can be treated using
an extension of the SCF method from Section 1.4. If t � U0, it will be in the CB
regime and can in principle be treated using the multi-electron master equation (to be
discussed in Section 3.4), under certain conditions (specifically if t is much less than the
level broadening γs introduced by phase-breaking processes of the type to be discussed
in Chapter 10). On the other hand, large conductors with γs � t ≤ U0 belong to an
intermediate regime that presents major theoretical challenges, giving rise to intriguing
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t 

Drain 

m1 m2

Source

Fig. 1.6.1 A large conductor can be viewed as an array of unit cells. If the conductor is extended in
the transverse plane, we should view each unit cell as representing an array of unit cells in the
transverse direction.

possibilities. Indeed many believe that high-Tc superconductors (whose microscopic
theory is still controversial) consist of unit cells whose coupling is delicately balanced
on the borderline of the SCF and the CB regimes.

The more delocalized the electronic wavefunctions (large t), the more accurate the
SCF description becomes and in this book I will focus on this regime. Basically I will
try to explain how the simple one-level description from Section 1.4 is extended to
larger conductors all the way to a nanotransistor, within the SCF picture that accounts
for electron–electron interactions through an average potential U(r) that one electron
feels due to the other electrons.

Summary of results for one-level conductors: We have developed a model for current
flow through a one-level device, starting with a simple discrete level (ε) in Section 1.2
and then extending it to include the broadening of the level into a Lorentzian density
of states in Section 1.3

Dε(E) = 2 (for spin) × γ /2π

(E − ε)2 + (γ /2)2 γ ≡ γ1 + γ2 (1.6.1)

and the self-consistent potential in Section 1.4

U = UL + U0 (N − N0) (1.6.2)

UL = CG

CE
(−qVG) + CD

CE
(−qVD)

U0 = q2/CE CE = CG + CS + CD (1.6.3)

The number of electrons N is given by (restricted SCF method)

N =
+∞∫

−∞
dE n(E)
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where

n(E) = D(E − U )

(
γ1

γ
f1(E) + γ2

γ
f2(E)

)
(1.6.4)

while the currents at the two terminals are given by

I1 = q
--h

+∞∫
−∞

dE γ1[D(E − U ) f1(E) − n(E)] (1.6.5a)

I2 = q
--h

+∞∫
−∞

dE γ2[D(E − U ) f2(E) − n(E)] (1.6.5b)

At steady state, the sum of the two currents is equated to zero to eliminate n(E):

I = q

h

+∞∫
−∞

dE T (E)[ f1(E) − f2(E)]

where

T (E) = D(E − U )2πγ1γ2/γ (1.6.6)

is called the transmission – a concept that plays a central role in the transmission
formalism widely used in mesoscopic physics (see Section 9.4). Note that the Fermi
functions f1 and f2 are given by

f1(E) = f0(E − µ1)

f2(E) = f0(E − µ2) (1.6.7)

where f0(E) ≡ [1 + exp(E/kBT )]−1 and the electrochemical potentials in the source
and drain contacts are given by

µ1 = µ

µ2 = µ − qVD (1.6.8)

µ being the equilibrium electrochemical potential.
Note that in Eqs. (1.6.4) through (1.6.6) I have used D(E) instead of Dε(E) to denote

the DOS. Let me explain why.

Large conductors – a heuristic approach: Dε(E) (see Eq. (1.6.1)) is intended to denote
the DOS obtained by broadening a single discrete level ε, while D(E) denotes the DOS
in general for a multi-level conductor with many energy levels (Fig. 1.6.2).

If we make the rather cavalier assumption that all levels conduct independently, then
we could use exactly the same equations as for the one-level device, replacing the
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one-level DOS Dε(E) in Eq. (1.6.1) with the total DOS D(E). With this in mind, I will
refer to Eqs. (1.6.4)–(1.6.6) as the independent level model for the current through a
channel.

Nanotransistor – a simple model: As an example of this independent level model, let
us model the nanotransistor shown in Fig. 1.1 by writing the DOS as (see Fig. 1.6.3, W
is the width in the y-direction)

D(E) = mcW L/π --h2ϑ(E − Ec) (1.6.9)

making use of a result that we will discuss in Chapter 6, namely that the DOS per
unit area in a large two-dimensional (2D) conductor described by an effective mass
mc is equal to mc/π --h2, for energies greater than the energy Ec of the conduction band
edge. The escape rates can be written down assuming that electrons are removed by the
contact with a velocity vR (somewhat like a “surface recombination velocity”):

γ1 = γ2 = --hvR/L (1.6.10)

The current–voltage relations shown in Fig. 1.1.1 were obtained using these
model parameters: mc = 0.25m, CG = 2εrε0W L/t, CS = CD = 0.05CG, W = 1 µm,
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L = 10 nm, insulator thickness t = 1.5 nm, vR = 107 cm/s. At high drain voltages VD

the current saturates when µ2 drops below Ec since there are no additional states to
contribute to the current. Note that the gate capacitance CG is much larger than the other
capacitances, which helps to hold the channel potential fixed relative to the source as
the drain voltage is increased (see Eq. (1.6.3)). Otherwise, the bottom of the channel
density of states, Ec will “slip down” with respect to µ1 when the drain voltage is
applied, so that the current will not saturate. The essential feature of a well-designed
transistor is that the gate is much closer to the channel than L, allowing it to hold the
channel potential constant despite the voltage VD on the drain.

I should mention that our present model ignores the profile of the potential along
the length of the channel, treating it as a little box with a single potential U given by
Eq. (1.6.2). Nonetheless the results (Fig. 1.1.1) are surprisingly close to experiments/
realistic models, because the current in well-designed nanotransistors is controlled by a
small region in the channel near the source whose length can be a small fraction of the
actual length L. Luckily we do not need to pin down the precise value of this fraction,
since the present model gives the same current independent of L.

Ohm’s law? Would this independent level model lead to Ohm’s law if we were to
calculate the low-bias conductance of a large conductor of length L and cross-sectional
area S? Since the current is proportional to the DOS, D(E) (see Eq. (1.6.5)), which is
proportional to the volume SL of the conductor, it might seem that the conductance
G ∼ SL. However, the coupling to the contacts decreases inversely with the length L of
the conductor, since the longer a conductor is, the smaller is its coupling to the contact.
While the DOS goes up with the volume, the coupling to the contact goes down as 1/L ,
so that the conductance

G ∼ SL/L = S

However, Ohm’s law tells us that the conductance should scale as S/L; we are predicting
that it should scale as S. The reason is that we are really modeling a ballistic conductor,
where electrons propagate freely, the only resistance arising from the contacts. The
conductance of such a conductor is indeed independent of its length. The ohmic length
dependence of the conductance comes from scattering processes within the conductor
that are not yet included in our thinking.

For example, in a uniform channel the electronic wavefunction is spread out uni-
formly. But a scatterer in the middle of the channel could split up the wavefunc-
tions into two, one on the left and one on the right with different energies. One has
a small γ2 while the other has a small γ1, and so neither conducts very well. This
localization of wavefunctions would seem to explain why the presence of a scatterer
contributes to the resistance, but to get the story quantitatively correct it is in general
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Fig. 1.6.4 When an electron goes from the source to the drain, an empty state or hole is left behind
in the source, while an electron appears in the drain. Energy dissipating processes quickly take the
electron down to µ2 inside the drain and the hole up to µ1 in the source. In our model we do not
explicitly discuss these processes; we simply legislate that the contacts are maintained at
equilibrium with the assumed electrochemical potentials.

necessary to go beyond the independent level model to account for interference between
multiple paths. This requires a model that treats γ as a matrix rather than as simple
numbers.

Such “coherent” scatterers, however, do not really lead to a resistance R ∼ 1/L
(Ohm’s law). The full story requires us to include phase-breaking scattering processes
that cause a change in the state of an external object. For example, if an electron
gets deflected by a rigid (that is unchangeable) defect in the lattice, the scattering
is said to be coherent. But if the electron transfers some energy to the atomic lat-
tice causing it to start vibrating, that would constitute a phase-breaking or incoherent
process.

Such incoherent scatterers are also needed to remove energy from the electrons and
cause dissipation. For example, in this chapter we have developed a simple model that
allows us to calculate the resistance R, but none of the associated Joule heat I 2 R is
dissipated in the channel; it is all dissipated in the contacts. This is evident if we consider
what happens when an electron goes from the source to the drain (Fig. 1.6.4). An empty
state or hole is left behind in the source at an energy lower than µ1 while an electron
appears in the drain at an energy higher than µ2. Energy dissipating processes quickly
take the electron down to µ2 inside the drain and the hole up to µ1 in the source. The
overall effect is to take an electron from µ1 in the source to µ2 in the drain, and in our
model the energy (µ1−µ2) is dissipated partly in the source and partly in the drain, but
none in the channel. In the real world too there is experimental evidence that in nanoscale
conductors, most of the heating occurs in the contacts outside the channel, allowing
experimentalists to pump a lot more current through a small conductor without burning
it up. But long conductors have significant incoherent scattering inside the channel and
it is important to include it in our model.

The point is that the transition from ballistic conductors to Ohm’s law has many
subtleties that require a much deeper model for the flow of current than the independent
level model (Eqs. (1.6.4)–(1.6.6)), although the latter can often provide an adequate
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description of short conductors. Let me now try to outline briefly the nature of this
“deeper model” that we will develop in this book and illustrate with examples in
Chapter 11.

Multi-level conductors – from numbers to matrices: The independent level model
that we have developed in this chapter serves to identify the important concepts
underlying the flow of current through a conductor, namely the location of the
equilibrium electrochemical potential µ relative to the density of states D(E), the broad-
ening of the level γ1,2 due to the coupling to contacts 1 and 2, the self-consistent potential
U describing the effect of the external electrodes, and the change in the number of elec-
trons N. In the general model for a multi-level conductor with n energy levels, each of
these quantities is replaced by a corresponding matrix of size (n × n):

ε → [H ] Hamiltonian matrix

γ1,2 → [�1,2(E)] Broadening matrix

2π D(E) → [A(E)] Spectral function

2πn(E) → [Gn(E)] Correlation function

U → [U ] Self-consistent potential matrix

N → [ρ] =
∫

(dE/2π )[Gn(E)] Density matrix

Actually, the effect of the contacts is described by a “self-energy” matrix, [	1,2(E)],
whose anti-Hermitian part is the broadening matrix: �1,2 = i[	1,2 − 	+

1,2]. All quan-
tities of interest can be calculated from these matrices. For example, in Section 1.2 we
discussed the inflow/outflow of electrons from a one-level device. Figure 1.6.5 illus-
trates how these concepts are generalized in terms of these matrices. I should mention
that in order to emphasize its similarity to the familiar concept of electron density,
I have used Gn(E) to denote what is usually written in the literature as −iG<(E)
following the non-equilibrium Green’s function (NEGF) formalism pioneered by the
works of Martin and Schwinger (1959), Kadanoff and Baym (1962) and Keldysh
(1965).

Note that in the matrix model (Fig. 1.6.5b), I have added a third “contact” labeled
“s-contact” representing scattering processes, without which we cannot make the tran-
sition to Ohm’s law. Indeed it is only with the advent of mesoscopic physics in the
1980s that the importance of the contacts (�1 and�2) in interpreting experiments
became widely recognized. Prior to that, it was common to ignore the contacts as minor
experimental distractions and try to understand the physics of conduction in terms of
the s-contact, though no one (to my knowledge) thought of scattering as a “contact”
till Büttiker introduced the idea phenomenologically in the mid 1980s (see Büttiker,
1988; Datta, 1995). Subsequently, Datta (1989) showed from a microscopic model that
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Fig. 1.6.5 From numbers to matrices: flux of electrons into and out of a device at the source and
drain ends. (a) Simple result for independent level model, see Eqs. (1.6.4)–(1.6.6). (b) General
matrix model, to be developed in this book. Without the “s-contact” this model is equivalent to
Eq. (6) of Meir and Wingreen (1992). The “s-contact” distributed throughout the channel describes
incoherent scattering processes (Datta, 1989). In general this “contact” cannot be described by a
Fermi function, unlike the real contacts.

incoherent scattering processes act like a fictitious “contact” distributed throughout the
channel that extracts and reinjects electrons. Like the real contacts, coupling to this
“contact” too can be described by a broadening matrix �s. However, unlike the real
contacts, the scattering contact in general cannot be described by a Fermi function so
that although the outflow is given by Trace[�sGn/2π ], the inflow requires separate
considerations that we will discuss in Chapter 10. The complete set of equations is
summarized in Chapter 11.

The reader might wonder why the numbers become matrices, rather than just column
vectors. For example, with one unit cell, we have an energy level ε. It seems reasonable
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that with many unit cells, we should talk about an energy level ε(n) in each cell “n”.
But why do we need a matrix H(m, n)? This is a question that goes to the heart of
quantum mechanics whereby all physical quantities are represented by matrices. We
can find a representation that diagonalizes [H] and in this representation we could write
the energy eigenvalues as a column vector ε(n). If all the other matrices were also
approximately diagonal in this representation, then we could indeed work with column
vectors with n elements rather than matrices with n2 elements and that is what “semi-
classical” methods commonly do. In general, no single representation will diagonalize
all the matrices and a full quantum treatment is needed.

Figure 1.6.5b without the s-contact is often used to analyze small devices and in
this form it is identical to the result obtained by Meir and Wingreen (1992, their
Eq. (6)) following the method of Caroli et al. (1972) based on the NEGF formal-
ism. In order to make this approach accessible to readers unfamiliar with advanced
many-body physics, I will derive these results using elementary arguments. What we
have derived in this chapter (Fig. 1.6.5a) could be viewed as a special case of this general
formalism with all the matrices being (1 × 1) in size. Indeed if there is a representation
that diagonalizes all the matrices, then the matrix model without the s-contact would
follow quite simply from Fig. 1.6.5a. We could write down separate equations for the
current through each diagonal element (or level) for this special representation, add
them up and write the sum as a trace. The resulting equations would then be valid in
any representation, since the trace is invariant under a change in basis. In general, how-
ever, the matrix model cannot be derived quite so simply since no single representation
will diagonalize all the matrices. In Chapters 8–10, I have derived the full matrix model
(Fig. 1.6.5b) using elementary quantum mechanics. In the appendix, I have provided a
brief derivation of the same results using the language of second quantization, but here
too I have tried to keep the discussion less “advanced” than the standard treatments
available in the literature.

I should mention that the picture in Fig. 1.6.5 is not enough to calculate the current:
additional equations are needed to determine the “density of states” [A(E)] and the
“electron density” [Gn(E)]. In our elementary model (Fig. 1.6.5a) we wrote down the
density of states by “ansatz” (see Eq. (1.6.1)), but no separate equation was needed for
the electron density which was evaluated by equating the currents (see derivation of
Eq. (1.2.3) for a discrete level that was extended to obtain Eq. (1.6.4) for a broadened
level). In the matrix model (Fig. 1.6.5b) too (without the s-contact), it was argued in
Meir and Wingreen (1992) that [Gn(E)] can be similarly eliminated if [�1] is equal to a
constant times [�2]. However, this can be true only for very short channels. Otherwise,
the source end is distinct from the drain end, making [�1] a very different matrix from
[�2] since they couple to different ends. We then need additional equations to determine
both [A(E)] and [Gn(E)].

There is an enormous amount of physics behind all these matrices (both the diagonal
and the off-diagonal elements) and we will introduce and discuss them in course of this
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book: the next five chapters are about [H], Chapter 7 is about [ρ], Chapter 8 is about
[	], Chapter 9 combines these concepts to obtain the inflow/outflow diagram shown in
Fig. 1.6.5b, and Chapter 10 introduces the matrix �s describing scattering to complete
the model for dissipative quantum transport. Finally, in Chapter 11, we illustrate the full
“machinery” using a series of examples chosen to depict the transition from ballistic
transport to Ohm’s law, or in other words, from the atom to the transistor.

After that rather long introduction, we are now ready to get on with the “details.”
We will start with the question of how we can write down the Hamiltonian [H] for a
given device, whose eigenvalues will tell us the energy levels. We will work our way
from the hydrogen atom in Chapter 2 “up” to solids in Chapter 5 and then “down”
to nanostructures in Chapter 6. Let us now start where quantum mechanics started,
namely, with the hydrogen atom.

EXERCISES
E.1.1. Consider a channel with one spin-degenerate level assuming the following
parameters: µ = 0, ε = 0.2 eV, kBT = 0.025 eV, γ1 = γ2 = 0.005 eV. Calculate the
current vs. drain voltage VD assuming VG = 0 with UL = −qVD/2 and U0 = 0.1 eV,
0.25 eV, using the SCF approach and compare with Fig. 1.4.6.

E.1.2. Calculate the current vs. gate and drain voltages for a nanotransistor as shown
in Fig. 1.1.1 using the SCF equations summarized in Eqs. (1.6.2)–(1.6.7) with D(E) =
mcW L/π --h2 and γ1 = γ2 = --hvR/L and the following parameters: mc = 0.25m, CG =
2εrε0W L/t, CS = CD = 0.05CG, W = 1 µm, L = 10 nm, insulator thickness, t =
1.5 nm, vR = 107 cm/s.

E.1.3. Thermoelectric effect: In this chapter we have discussed the current that flows
when a voltage is applied between the two contacts. In this case the current depends on
the DOS near the Fermi energy and it does not matter whether the equilibrium Fermi
energy µ1 lies on (a) the lower end or (b) the upper end of the DOS:
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Fig. E.1.3 You should get a plot like this showing the reversal in the direction of the current from
p-type (µ1 < ε) to n-type (µ1 > ε) samples.

However, if we simply heat up one contact relative to the other so that T1 > T2 (with
no applied voltage) a thermoelectric current will flow whose direction will be different
in case (a) and in case (b).

To see this, calculate the current from Eq. (1.6.6) with U = 0 (there is no need to
perform a self-consistent solution), VD = 0 and VG = 0, and with kBT1 = 0.026 eV and
kBT2 = 0.025 eV:

f1(E) ≡
[

1 + exp

(
E − µ1

kBT1

)]−1

and f2(E) ≡
[

1 + exp

(
E − µ1

kBT2

)]−1

and plot it as a function of (µ1 − ε) as the latter changes from −0.25 eV to +0.25 eV
assuming γ1 = γ 2 = 0.05 eV (Fig. E.1.3). This problem is motivated by Paulsson and
Datta (2003).

E.1.4. Negative differential resistance: Figure 1.4.6a shows the current–voltage
(I–VD) characteristics calculated from a self-consistent solution of Eqs. (1.6.2)–(1.6.5)
assuming

ε = 0.2 eV, kBT = 0.025 eV, U0 = 0.025 eV, VG = 0,

µ1 = 0, µ2 = µ1 − qVD, UL = −qVD/2

The broadening due to the two contacts γ1 and γ 2 is assumed to be constant, equal to
0.005 eV.

Now suppose γ1 is equal to 0.005 eV for E > 0, but is zero for E < 0 (γ2 is still inde-
pendent of energy and equal to 0.005 eV). Show that the current–voltage characteristics
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will now show negative differential resistance (NDR), that is, a drop in the current with
an increase in the voltage, in one direction of applied voltage but not the other as shown
in Fig. E.1.4.

This problem is motivated by Rakshit et al. (2004).
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2 Schrödinger equation

Our objective for the next few chapters is to learn how the Hamiltonian matrix [H] for a
given device structure (see Fig. 1.6.5) is written down. We start in this chapter with (1)
the hydrogen atom (Section 2.1) and how it led scientists to the Schrödinger equation,
(2) a simple approach called the finite difference method (Section 2.2) that can be used
to convert this differential equation into a matrix equation, and (3) a few numerical
examples (Section 2.3) showing how energy levels are calculated by diagonalizing the
resulting Hamiltonian matrix.

2.1 Hydrogen atom

Early in the twentieth century scientists were trying to build a model for atoms which
were known to consist of negative particles called electrons surrounding a positive
nucleus. A simple model pictures the electron (of mass m and charge −q) as orbiting
the nucleus (with charge Zq) at a radius r (Fig. 2.1.1) kept in place by electrostatic
attraction, in much the same way that gravitational attraction keeps the planets in orbit
around the Sun.

Zq2

4πε0r2
= mv2

r
⇒ v =

√
Zq2

4πε0mr
(2.1.1)

Electrostatic force = Centripetal force

A faster electron describes an orbit with a smaller radius. The total energy of the electron
is related to the radius of its orbit by the relation

E = − Zq2

4πε0r
+ mv2

2
= − Zq2

8πε0r
(2.1.2)

Potential energy + Kinetic energy = Total energy

However, it was soon realized that this simple viewpoint was inadequate since, accord-
ing to classical electrodynamics, an orbiting electron should radiate electromagnetic
waves like an antenna, lose energy continuously and spiral into the nucleus. Classically
it is impossible to come up with a stable structure for such a system except with the

33
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+ Zq 

−q 

Fig. 2.1.1 Stationary orbits of an electron around a nucleus can be obtained by requiring their
circumferences to be integer multiples of the de Broglie wavelength.

electron sitting right on top of the nucleus, in contradiction with experiment. It was
apparent that a radical departure from classical physics was called for.

Bohr postulated that electrons could be described by stable orbits around the nucleus
at specific distances from the nucleus corresponding to specific values of angular
momenta. It was later realized that these distances could be determined by endow-
ing the electrons with a wavelike character having a de Broglie wavelength equal to
(h/mv), h being the Planck constant. One could then argue that the circumference of
an orbit had to be an integer multiple of wavelengths in order to be stable:

2πr = n(h/mv) (2.1.3)

Combining Eq. (2.1.3) with Eqs. (2.1.1) and (2.1.2) we obtain the radius and energy of
stable orbits respectively:

rn = (n2/Z )a0 (Bohr radius) (2.1.4)

where a0 = 4πε0
--h2/mq2 = 0.0529 nm (2.1.5)

En = −(Z2/n2)E0 (2.1.6a)

where E0 = q2/8πε0a0 = 13.6 eV (1 Rydberg) (2.1.6b)

Once the electron is in its lowest energy orbit (n = 1) it cannot lose any more energy
because there are no stationary orbits having lower energies available (Fig. 2.1.2a). If
we heat up the atom, the electron is excited to higher stationary orbits (Fig. 2.1.2b).
When it subsequently jumps down to lower energy states, it emits photons whose energy
hν corresponds to the energy difference between orbits m and n:

hν = Em − En = E0 Z2

(
1

n2
− 1

m2

)
(2.1.7)

Experimentally it had been observed that the light emitted by a hydrogen atom indeed
consisted of discrete frequencies that were described by this relation with integer values
of n and m. This striking agreement with experiment suggested that there was some
truth to this simple picture, generally known as the Bohr model.
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(a) Ground state (b) Excited states
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Fig. 2.1.2 (a) Left to itself, the electron relaxes to its lowest energy orbit (n = 1). (b) If we heat up
the atom, the electron is excited to higher stationary orbits. When it subsequently jumps down to
lower energy states, it emits photons whose energy hν corresponds to the energy difference
between the initial and final orbits.

The Schrödinger equation put this heuristic insight on a formal quantitative basis
allowing one to calculate the energy levels for any confining potential U (�r ).

i--h
∂�

∂t
=

(
−

--h2

2m
∇2 + U (�r )

)
� (2.1.8)

How does this equation lead to discrete energy levels? Mathematically, one can show
that if we assume a potential U (�r ) = −Zq2/4πε0 r appropriate for a nucleus of charge
+Zq, then the solutions to this equation can be labeled with three indices n, l and m

�(�r , t) = φnlm(�r ) exp (−iEnt/--h) (2.1.9)

where the energy En depends only on the index n and is given by En = −(Z2/n2)E0 in
agreement with the heuristic result obtained earlier (see Eq. (2.1.6a)). The Schrödinger
equation provides a formal wave equation for the electron not unlike the equation that
describes, for example, an acoustic wave in a sound box . The energy E of the electron
plays a role similar to that played by the frequency of the acoustic wave. It is well-
known that a sound box resonates at specific frequencies determined by the size and
shape of the box. Similarly an electron wave in an atomic box “resonates” at specific
energies determined by the size and shape of the box as defined by the potential energy
U (�r). Let us elaborate on this point a little further.

Waves in a box: To keep things simple let us consider the vibrations u(x, t) of a
one-dimensional (1D) string described by the 1D wave equation:

∂2u

∂t2
= v2 ∂2u

∂x2
(2.1.10)
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(a) (b) 

x = L x = 0x = 0 x = L 

Fig. 2.1.3 Standing waves. (a) Acoustic waves in a “guitar” string with the displacement clamped
to zero at either end. (b) Electron waves in a one-dimensional box with the wavefunction clamped
to zero at both ends by an infinite potential.

The solutions to this equation can be written in the form of plane waves with a linear
dispersion ω = ±vk :

u = u0 exp(ikx) exp(−iωt) ⇒ ω2 = v2k2 (2.1.11)

What happens if we clamp the two ends so that the displacement there is forced to be
zero (Fig. 2.1.3)? We have to superpose solutions with +k and −k to obtain standing
wave solutions. The allowed values of k are quantized leading to discrete resonant
frequencies:

u = u0 sin(kx) exp(−iωt) ⇒ k = nπ/L ⇒ ω = nπv/L (2.1.12)

Well, it’s the same way with the Schrödinger equation. If there is no confining potential
(U = 0), we can write the solutions to the 1D Schrödinger equation:

i--h
∂�

∂t
= −

--h2

2m

∂2�

∂x2
(2.1.13)

in the form of plane waves with a parabolic dispersion law E = --h2k2/2m:

� = �0 exp(i kx) exp(−iEt/--h) ⇒ E = --h2k2/2m (2.1.14)

If we fix the two ends we get standing waves with quantized k and resonant frequency:

� = �0 sin(kx) exp(−iEt/--h) ⇒ k = nπ/L

⇒ E = --h2π2 n2/2mL2 (2.1.15)

Atomic “boxes” are of course defined by potentials U (�r ) that are more complicated
than the simple rectangular 1D potential shown in Fig. 2.1.2b, but the essential point is
the same: anytime we confine a wave to a box, the frequency or energy is discretized
because of the need for the wave to “fit” inside the box.

“Periodic” box: Another kind of box that we will often use is a ring (Fig. 2.1.4) where
the end point at x = L is connected back to the first point at x = 0 and there are no ends.
Real boxes are seldom in this form but this idealization is often used since it simplifies
the mathematics. The justification for this assumption is that if we are interested in the
properties in the interior of the box, then what we assume at the ends (or surfaces) should



37 2.1 Hydrogen atom

x

x = L ---  

x = 0 --- 

Fig. 2.1.4 Standing waves in a ring.

make no real difference and we could assume anything that makes our calculations
simpler. However, this may not be a valid argument for “nanostructures” where the
actual surface conditions can and do affect what an experimentalist measures.

Anyway, for a periodic box the eigenfunctions are given by (cf. Eq. (2.1.15))

� = �0sin(kx) exp(−iEt/--h)

and � = �0cos(kx) exp(−iEt/--h)

with k = 2nπ/L ⇒ E = 2--h2π2 n2/mL2 (2.1.16)

The values of k are spaced by 2π/L instead of π/L , so that there are half as many
allowed values. But for each value of k there is a sine and a cosine function which have
the same eigenvalue, so that the eigenvalues now come in pairs.

An important point to note is that whenever we have degenerate eigenstates, that is,
two or more eigenfunctions with the same eigenvalue, any linear combination of these
eigenfunctions is also an eigenfunction with the same eigenvalue. So we could just as
well write the eigenstates as

� = �0 exp(+ikx) exp(−iEt/--h)

and � = �0 exp(+ikx) exp(−iEt/--h)

with k = 2nπ/L ⇒ E = 2--h2π2 n2/mL2 (2.1.17)

This is done quite commonly in analytical calculations and the first of these is viewed
as the +k state traveling in the positive x-direction while the second is viewed as
the −k state traveling in the negative x-direction.

Electron density and probability current density: An electron with a wavefunction
�(x, t) has a probability of �∗� dV of being found in a volume dV. When a number of
electrons are present we could add up �∗� for all the electrons to obtain the average
electron density n(x, t). What is the corresponding quantity we should sum to obtain
the probability current density J(x, t)?

The appropriate expression for the probability current density

J = i--h

2m

(
�

∂�∗

∂x
− �∗ ∂�

∂x

)
(2.1.18)
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is motivated by the observation that as long as the wavefunction �(x, t) obeys the
Schrödinger equation, it can be shown that

∂ J

∂x
+ ∂n

∂t
= 0 (2.1.19)

if J is given by Eq. (2.1.18) and n = �∗�. This ensures that the continuity equation is
satisfied regardless of the detailed dynamics of the wavefunction. The electrical current
density is obtained by multiplying J by the charge (−q) of an electron.

It is straightforward to check that the “+k” and “−k” states in Eq. (2.1.17) carry
equal and opposite non-zero currents proportional to the electron density

J = (--hk/m) ��∗ (2.1.20)

suggesting that we associate (--hk/m) with the velocity v of the electron (since we expect
J to equal nv). However, this is true only for the plane wave functions in Eq. (2.1.17).
The cosine and sine states in Eq. (2.1.16), for example, carry zero current. Indeed
Eq. (2.1.18) will predict zero current for any real wavefunction.

2.2 Method of finite differences

The Schrödinger equation for a hydrogen atom can be solved analytically, but most
other practical problems require a numerical solution. In this section I will describe one
way of obtaining a numerical solution to the Schrödinger equation. Most numerical
methods have one thing in common – they use some trick to convert the

wavefunction �(�r , t) into a column vector {ψ(t)}
and the differential operator Hop into a matrix [H ]

so that the Schrödinger equation is converted from a

partial differential equation into a matrix equation

i--h
∂

∂t
�(�r , t) = Hop�(�r , t) i--h

d

dt
{ψ(t)} = [H ] {ψ(t)}

This conversion can be done in many ways, but the simplest one is to choose a discrete
lattice. To see how this is done let us for simplicity consider just one dimension and
discretize the position variable x into a lattice as shown in Fig. 2.2.1: xn = na.

We can represent the wavefunction �(x, t) by a column vector {ψ1(t) ψ2(t) · · · · · · }T

(“T” denotes transpose) containing its values around each of the lattice points at time
t. Suppressing the time variable t for clarity, we can write

{ψ1 ψ2 · · · · · ·} = {�(x1) �(x2) · · · · · ·}
This representation becomes exact only in the limit a → 0, but as long as a is smaller
than the spatial scale on which � varies, we can expect it to be reasonably accurate.
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x

a

x x x

x
x

Fig. 2.2.1 A continuous function can be represented by its values at a set of points on a discrete
lattice.

The next step is to obtain the matrix representing the Hamiltonian operator

Hop ≡ −
--h2

2m

d2

dx2
+ U (x)

Basically what we are doing is to turn a differential equation into a difference equation.
There is a standard procedure for doing this – the finite difference technique:

(
∂2�

∂x2

)
x=xn

→ 1

a2
[�(xn+1) − 2�(xn) + �(xn−1)]

and

U (x) �(x) → U (xn)�(xn)

This allows us to write (note: t0 ≡ --h2/2ma2 and Un ≡ U (xn))

i--h
dψn

dt
= [

Hop ψ
]

x=xn
= (Un + 2t0) ψn − t0ψn−1 − t0ψn+1

=
∑

m

[(Un + 2t0) δn,m − t0δn,m+1 − t0δn,m−1]ψm (2.2.1)

where δn,m is the Kronecker delta, which is one if n = m and zero if n �= m. We can
write Eq. (2.2.1) as a matrix equation:

i--h
d

dt
{ψ(t)} = [H ] {ψ(t)} (2.2.2)

The elements of the Hamiltonian matrix are given by

Hn,m = [Un + 2t0] δn,m − t0δn,m+1 − t0δn,m−1 (2.2.3)
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where t0 ≡ --h2/2ma2 and Un ≡ U (xn). This means that the matrix representing H looks
like this

H = 1 2 . . . N − 1 N

1 2t0 + U1 −t0 0 0
2 −t0 2t0 + U2 0 0

. . . . . . . . .

N − 1 0 0 2t0 + UN−1 −t0
N 0 0 −t0 2t0 + UN

(2.2.4)

For a given potential function U (x) it is straightforward to set up this matrix, once we
have chosen an appropriate lattice spacing a.

Eigenvalues and eigenvectors: Now that we have converted the Schrödinger equation
into a matrix equation (Eq. (2.2.2))

i--h
d

dt
{ψ(t)} = [H ] {ψ(t)}

how do we calculate {ψ(t)} given some initial state {ψ(0)}? The standard procedure is
to find the eigenvalues Eα and eigenvectors {α} of the matrix [H]:

[H ] {α} = Eα {α} (2.2.5)

Making use of Eq. (2.2.5) it is easy to show that the wavefunction {ψ(t)} = e−iEα t/--h {α}
satisfies Eq. (2.2.2). Since Eq. (2.2.2) is linear, any superposition of such solutions

{ψ(t)} =
∑

α

Cαe−iEα t/--h {α} (2.2.6)

is also a solution. It can be shown that this form, Eq. (2.2.6), is “complete,” that is,
any solution to Eq. (2.2.2) can be written in this form. Given an initial state we can
figure out the coefficients Cα . The wavefunction at subsequent times t is then given
by Eq. (2.2.6). Later we will discuss how we can figure out the coefficients. For the
moment we are just trying to make the point that the dynamics of the system are easy
to visualize or describe in terms of the eigenvalues (which are the energy levels that we
talked about earlier) and the corresponding eigenvectors (which are the wavefunctions
associated with those levels) of [H]. That is why the first step in discussing any system
is to write down the matrix [H] and to find its eigenvalues and eigenvectors. This is
easily done using any standard mathematical package like Matlab as we will discuss
in the next section.
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2.3 Examples

Let us now look at a few examples to make sure we understand how to find the eigen-
energies and eigenvectors numerically using the method of finite differences described
in the last section. These examples are all simple enough to permit analytical solutions
that we can use to compare and evaluate our numerical solutions. The advantage of
the numerical procedure is that it can handle more complicated problems just as easily,
even when no analytical solutions are available.

2.3.1 Particle in a box

Consider, first the “particle in a box” problem that we mentioned in Section 2.1. The
potential is constant inside the box which is bounded by infinitely high walls at x = 0
and at x = L (Fig. 2.3.1). The eigenstates φα(x) are given by

φα(x) ∼ sin(kα x) where kα = απ/L , α = 1, 2, . . .

and their energies are given by Eα = --h2k2
α/2m.

We could solve this problem numerically by selecting a discrete lattice with 100
points and writing down a 100 × 100 matrix [H] using Eq. (2.2.4) with all Un = 0:

H = 1 2 . . . 99 100

1 2t0 −t0 0 0
2 −t0 2t0 0 0

. . . . . . . . .

99 0 0 2t0 −t0
100 0 0 −t0 2t0

(2.3.1)

U(x)

x x x x
1 2 99 100

a = 1 A

x
U = 0

°

Fig. 2.3.1 Energy levels for a “particle in a box” are calculated using a discrete lattice of
100 points spaced by a = 1 Å.
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Fig. 2.3.2 (a) Numerical evaluation (see Fig. 2.3.1) yields 100 eigenvalues that follow the
analytical result well for low energies but deviate at higher energies because the wavefunctions
oscillate too rapidly. (b) Probability distribution (squared eigenfunction) for eigenvalues α = 1 and
α = 25.

It is straightforward to set up this matrix and use any standard mathematical package
like Matlab to find the eigenvalues and the corresponding eigenvectors. We obtained
100 eigenvalues, which are plotted in Fig. 2.3.2a. They follow the analytical result
Eα = --h2π2α2/2mL2, with L = 101a, fairly well at low energy, but deviate at higher
energies because of the rapid oscillations in the wavefunction. Our finite difference
approximation to the second derivative operator (note that t0 ≡ --h2/2ma2)

−
--h2

2m

(
∂2�

∂x2

)
x=xn

→ t0 [�(xn+1) − 2�(xn) + �(xn−1)]

is accurate only if � varies slowly enough on a length scale of a. Indeed if we put
� ∼ sin (kαx) it is straightforward to show that

−
--h2

2m

(
∂2�

∂x2

)
x=xn

= t0 (kαa) 2 �(xn)

while

t0 [�(xn+1) − 2�(xn) + �(xn−1)] = 2t0(1 − cos kαa)�(xn)

Since kα = απ/L , the analytical eigenvalues follow a parabolic function while the
numerical eigenvalues follow a cosine function:

Eα = t0(παa/L)2 Eα = 2t0[1 − cos (απa/L)]
Analytical result Numerical result

The two are equivalent only if kαa = απa/L � 1 so that cos (kαa) ≈ 1 − (k2
αa2/2).
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Normalization: Figure 2.3.2b shows the eigenfunction squared corresponding to the
eigenvalues α = 1 and α = 25. A word about the normalization of the wavefunctions:
In analytical treatments, it is common to normalize wavefunctions such that

+∞∫
−∞

dx |φα(x)|2 = 1

Numerically, a normalized eigenvector satisfies the condition

N∑
n=1

|φα(xn)|2 = 1

So when we compare numerical results with analytical results we should expect

|φα(xn)|2 = |φα(x)|2 a (2.3.2)

Numerical Analytical

where a is the lattice constant (see Fig. 2.3.1). For example, in the present case

|φα(x)|2 = (2/L) sin2(kα x) −→ |φα(xn)|2 = (2a/L) sin2(kα xn)

Analytical Numerical

Since we used a = 1 Å and L = 101 Å, the numerical probability distribution should
have a peak value of 2a/L ≈ 0.02 as shown in Fig. 2.3.2b.

Boundary conditions: One more point: Strictly speaking, the matrix [H] is infinitely
large, but in practice we always truncate it to a finite number, say N, of points. This
means that at the two ends we are replacing (see Eq. (2.2.1))

−t0ψ0 + (2t0 + U1)ψ1 − t0ψ2 with (2t0 + U1)ψ1 − t0ψ2

and

−t0ψN−1 + (2t0 + UN )ψN − t0ψN+1 with −t0ψN−1 + (2t0 + UN )ψN

In effect we are setting ψ0 and ψN+1 equal to zero. This boundary condition is appro-
priate if the potential is infinitely large at point 0 and at point N + 1 as shown in
Fig. 2.3.3. The actual value of the potential at the end points will not affect the results
as long as the wavefunctions are essentially zero at these points anyway.

Another boundary condition that is often used is the periodic boundary condition
where we assume that the last point is connected back to the first point so that there
are no ends (Fig. 2.3.4). As we mentioned earlier (Fig. 2.1.4), the justification for this
assumption is that if we are interested in the properties in the interior of a structure,
then what we assume at the boundaries should make no real difference and we could
assume anything to make our calculations simpler.
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x

1 2 . . .  N0 N + 1

Fig. 2.3.3 The boundary condition ψ0 = 0 and ψN +1 = 0 can be used if we assume an infinitely
large potential at points 0 and N + 1.

x
1 2 . . .  N0 N + 1

Fig. 2.3.4 Periodic boundary conditions assume that there are no “ends.” Point N is connected
back to point 1 as if the structure were in the form of a ring making (N + 1) equivalent to 1.

Mathematically, periodic boundary conditions are implemented by modifying the
Hamiltonian to

H = 1 2 . . . 99 100

1 2t0 −t0 0 −t0
2 −t0 2t0 0 0

. . . . . . . . .

99 0 0 2t0 −t0
100 −t0 0 −t0 2t0

(2.3.3)

Note that compared to the infinite wall boundary conditions (cf. Eq. (2.3.1)) the only
change is in the elements H(1, 100) and H(100, 1). This does change the resulting
eigenvalues and eigenvectors, but the change is imperceptible if the number of points
is large. The eigenfunctions are now given by

φα(x) ∼ sin(kαx) and cos(kαx)

where kα = α 2π/L , α = 1, 2, . . . instead of

φα(x) ∼ sin(kαx)

where kα = α π/L , α = 1, 2, . . .

The values of kα are spaced by 2π/L instead of π/L, so that there are half as many
allowed values. But for each value of kα there is a sine and a cosine function which
have the same eigenvalue, so that the eigenvalues now come in pairs as evident from
Fig. 2.3.5.
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Fig. 2.3.5 Energy eigenvalues for a box of length 101 Å (same as Fig. 2.3.1) with periodic
boundary conditions: the eigenvalues now come in pairs.

As we discussed earlier, instead of writing the eigenstates as

cos(kαx) and sin(kαx)

we could just as well write them as

eikα x = cos(kαx) + i sin(kαx) and e−ikα x = cos(kαx) − i sin(kαx)

This is done quite commonly in analytical calculations, but numerical calculations will
typically give the eigenvectors as cos(kαx) and sin(kαx). Both forms are equally correct
though one may be more convenient than the other for certain calculations.

Number of eigenvalues: Another important point to note about the numerical solution
is that it yields a finite number of eigenvalues (unlike the analytical solution for which
the number is infinite). This is expected since a finite matrix can have only a finite
number of eigenvalues, but one might wonder why we do not have an infinite number
of Eα corresponding to an infinite number of kαa = α2πa/L , just as we have for the
analytical result. The reason is that for a discrete lattice, the wavefunctions

sin(kα x) and sin([kα + (2π/a)]x)

represent the same state because at any lattice point xn = na,

sin(kα xn) = sin([kα + (2π/a)]xn)

They are NOT equal between two lattice points and thus represent distinct states in a
non-discrete representation. But once we adopt a discrete lattice, values of kα differing
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by 2π/a represent identical states and only the values of kαa within a range of 2π yield
independent solutions. Since kαa = απa/L = απ/N , this means that there are only
N values of α that need to be considered. It is common to restrict the values of kαa to
the range (sometimes called the first Brillouin zone)

−π < kαa ≤ +π for periodic boundary conditions

and

0 < kαa ≤ +π for infinite wall boundary conditions

2.3.2 Particle in a 3D “box”

For simplicity we have limited our discussion of the method of finite differences to one
dimension, but the basic idea carries over in principle to two or three dimensions. The
diagonal elements of [H] are equal to t0 times the number of nearest neighbors (two in
one dimension, four in two dimensions and six in three dimensions) plus the potential
U (�r ) evaluated at the lattice site, while the off-diagonal elements are equal to −t0 for
neighboring sites on the lattice. That is, (ν is the number of nearest neighbors)

Hnm = νt0 n = m

= −t0 n, m are nearest neighbors (2.3.4)

= 0 otherwise

However, we run into a practical difficulty in two or three dimensions. If we have lattice
points spaced by 1 Å, then a one-dimensional problem with L = 101 Å requires a matrix
[H] 100 × 100 in size. But in three dimensions this would require a matrix 106 × 106

in size. This means that in practice we are limited to very small problems. However,
if the coordinates are separable then we can deal with three separate one-dimensional
problems as opposed to one giant three-dimensional problem. This is possible if the
potential can be separated into an x-, a y-, and a z-dependent part:

U (�r ) = Ux (x) + Uy(y) + Uz(z) (2.3.5)

The wavefunction can then be written in product form:

�(�r ) = X (x)Y (y)Z (z)

where each of the functions X (x), Y (y), and Z (z) is obtained by solving a separate
one-dimensional Schrödinger equation:

Ex X (x) =
(

−
--h2

2m

d2

dx2
+ Ux (x)

)
X (x)

EyY (y) =
(

−
--h2

2m

d2

dy2
+ Uy(y)

)
Y (y) (2.3.6)

Ez Z (z) =
(

−
--h2

2m

d2

dz2
+ Uz(z)

)
Z (z)
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The total energy E is equal to the sum of the energies associated with each of the three
dimensions: E = Ex + Ey + Ez .

Spherically symmetric potential: Some problems may not be separable in Cartesian
coordinates but could be separable in cylindrical or spherical coordinates. For example,
the potential in a hydrogen atom U (�r ) = −q2/4πε0r cannot be separated in (x, y, z).
But it is separable in (r, θ , φ) and the wavefunction may be written in the form

�(r, θ, φ) = [ f (r )/r ] Y m
l (θ,φ) (2.3.7)

where the radial wavefunction f (r ) is obtained by solving the radial Schrödinger
equation:

E f (r ) =
(

−
--h2

2m

d2

dr2
+ U (r ) + l(l + 1)--h2

2mr2

)
f (r ) (2.3.8)

Here l = 0 for s levels, l = 1 for p levels and so on. Y m
l (θ, φ) are the spherical harmonics

given by

Y 0
0 (θ, φ) =

√
1/4π

Y 0
1 (θ, φ) =

√
3/4π cos θ

Y ±1
1 (θ, φ) = ±

√
3/8π sin θe±iφ

etc. Equation (2.3.8) can be solved numerically using the method of finite differences
that we have described.

Normalization: Note that the overall wavefunctions are normalized such that

∞∫
0

dr r2

π∫
0

dθ sin θ

2π∫
0

dφ |�|2 = 1

Since, from Eq. (2.3.7)

�(r, θ, φ) = [f (r )/r ]Y m
l (θ,φ)

and the spherical harmonics are normalized such that

π∫
0

dθ sin θ

2π∫
0

dφ
∣∣Y m

l

∣∣2 = 1

it is easy to see that the radial function f (r ) obeys the normalization condition

∞∫
0

dr |f (r )|2 = 1 (2.3.9)
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Fig. 2.3.6 Radial probability distribution | f (r )| 2 corresponding to the two lowest eigenvalues
(−13.56 eV and −2.96 eV) for l = 0 (which correspond to the 1s and 2s levels). The dots show the
analytical result (Eqs. (2.1.10a, b)) while the solid curve denotes the numerical result obtained
using a lattice with 100 points spaced by a = 0.05 Å.

suggesting that we view |f (r )|2 as a radial probability distribution function such that
|f (r )|2�r tells us the probability of finding the electron in the volume between r and
(r +�r). Numerical results with a lattice spacing of a should be compared with the
analytical values of |f (r )|2a. For example, for the 1s and 2s levels,

|f1s|2a = (
4ar2/a3

0

)
e−2r/a0 (2.3.10a)

|f2s|2a = (
ar2/8a3

0

) (
2 − r

a0

)2

e−2r/2a0 (2.3.10b)

Numerical results: If we use a lattice with 100 points spaced by a = 0.05 Å then the
two lowest eigenvalues with l = 0 (which correspond to the 1s and 2s levels) are

E1s = −13.56 eV and E2s = −2.96 eV

as compared with the analytical values (see Eq. (2.2.6)) E1s = −13.59 eV and
E2s = −3.4 eV. The 1s level agrees well, but the 2s level is considerably off. The
reason is easy to see if we plot the corresponding |f (r )|2 and compare with the analyt-
ical results. It is evident from Fig. 2.3.6 that the 1s wavefunction matches well, but it
is apparent that we do not have enough range for the 2s function. This can be fixed by
choosing a larger lattice spacing, namely a = 0.1 Å. Figure 2.3.7 shows that the wave-
function now matches the analytical result quite well and the 2s eigenvalue is −3.39 eV,
in good agreement with the analytical result. However, the 1s eigenvalue degrades
slightly to −13.47 eV, because the wavefunction is not sampled frequently enough. We
could improve the agreement for both 1s and 2s levels by using 200 points spaced by
a = 0.05 Å, so that we would have both fine sampling and large range. But the calculation
would then take longer since we would have to calculate the eigenvalues of a (200 ×
200) matrix instead of a (100 × 100) matrix.
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Fig. 2.3.7 Radial probability distribution | f (r )| 2 corresponding to the two lowest eigenvalues
(–13.47 eV and −3.39 eV) for l = 0 (which correspond to the 1s and 2s levels). Solid line shows
the analytical result (Eqs. (2.3.10a, b)) while the ×’s denote the numerical result obtained using a
lattice with 100 points spaced by a = 0.1 Å.

This simple example illustrates the essential issues one has to consider in setting up
the lattice for a numerical calculation. The lattice constant a has to be small enough to
provide adequate sampling of the wavefunction while the size of the lattice has to be
big enough to cover the entire range of the wavefunction. If it were essential to describe
all the eigenstates accurately, our problem would be a hopeless one. Luckily, however,
we usually need an accurate description of the eigenstates that lie within a certain range
of energies and it is possible to optimize our matrix [H] so as to provide an accurate
description over a desired range.

EXERCISES
E.2.1. (a) Use a discrete lattice with 100 points spaced by 1 Å to calculate the eigenen-
ergies for a particle in a box with infinite walls and compare with Eα = --h2π2 α2/2mL2

(cf. Fig. 2.3.2a). Plot the probability distribution (eigenfunction squared) for the eigen-
values α = 1 and α = 50 (cf. Fig. 2.3.2b). (b) Find the eigenvalues using periodic
boundary conditions and compare with Fig. 2.3.5.

E.2.2. (a) Obtain the radial equation given in Eq. (2.3.8) by (1) writing the operator ∇2

in the Schrödinger equation in spherical coordinates:

∇2 ≡
(

∂2

∂r2
+ 2

r

∂

∂r

)
+ 1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
(2) noting that the spherical harmonics Y m

l (θ, φ) are eigenfunctions of the angular
part:(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2θ

∂2

∂φ2

)
Y m

l = −l(l + 1)Y m
l
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(3) writing the wavefunction �(r ) = �(r ) Y m
l (θ, φ) and noting that

∇2� =
(

∂2

∂r2
+ 2

r

∂

∂r
− l(l + 1)

r2

)
�

(4) simplifying the Schrödinger equation to write for the radial part

Eψ =
(

−
--h2

2m

(
∂2

∂r2
+ 2

r

∂

∂r

)
+ U (r ) +

--h2l(l + 1)

2mr2

)
ψ

and finally (5) writing ψ(r ) = f (r )/r , to obtain Eq. (2.3.8) for f (r ).
(b) Use a discrete lattice with 100 points spaced by a to solve Eq. (2.3.8)

E f (r ) =
(

−
--h2

2m

d2

dr2
− q2

4πε0r
+ l(l + 1)--h2

2mr2

)
f (r )

for the 1s and 2s energy levels of a hydrogen atom. Plot the corresponding radial
probability distributions |f (r )| 2 and compare with the analytical results for (a) a =
0.05 Å (cf. Fig. 2.3.6) and (b) a = 0.1 Å (cf. Fig. 2.3.7).

Strictly speaking one should replace the electron mass with the reduced mass to
account for nuclear motion, but this is a small correction compared to our level of
accuracy.

E.2.3. Use Eq. (2.1.18) to evaluate the current density associated with an electron having
the wavefunction

�(x, t) = (e+γ x + ae−γ x )e−iEt/--h

assuming γ is (a) purely imaginary (= iβ) and (b) purely real.



3 Self-consistent field

As we move from the hydrogen atom (one electron only) to multi-electron atoms, we are
immediately faced with the issue of electron–electron interactions, which is at the heart
of almost all the unsolved problems in our field. In this chapter I will explain (1) the
self-consistent field (SCF) procedure (Section 3.1), which provides an approximate way
to include electron–electron interactions into the Schrödinger equation, (2) the inter-
pretation of the energy levels obtained from this so-called “one-electron” Schrödinger
equation (Section 3.2), and (3) the energetic considerations underlying the process by
which atoms “bond” to form molecules (Section 3.3). Finally, a supplementary section
elaborates on the concepts of Section 3.2 for interested readers (Section 3.4).

3.1 The self-consistent field (SCF) procedure

One of the first successes of quantum theory after the interpretation of the hydrogen atom
was to explain the periodic table of atoms by combining the energy levels obtained from
the Schrödinger equation with the Pauli exclusion principle requiring that each level
be occupied by no more than one electron. The energy eigenvalues of the Schrödinger
equation for each value of l starting from l = 0 (see Eq. (2.3.8)) are numbered with
integer values of n starting from n = l + 1. For any (n, l) there are (2l + 1) levels with
distinct angular wavefunctions (labeled with another index m), all of which have the
same energy. For each (n, l, m) there a is an up-spin and a down-spin level making the
number of degenerate levels equal to 2(2l + 1) for a given (n, l). The energy levels look
something like Fig. 3.1.1.

The elements of the periodic table are arranged in order as the number of electrons
increases by one from one atom to the next. Their electronic structure can be written as:
hydrogen, 1s1; helium, 1s2; lithium, 1s22s1; beryllium, 1s22s2; boron, 1s22s2 2p1, etc.,
where the superscript indicates the number of electrons occupying a particular orbital.

How do we calculate the energy levels for a multi-electron atom? The time-
independent Schrödinger equation

Eα�α(�r ) = Hop�α(�r ) where Hop ≡ −
--h2

2m
∇2 + U (�r )

51
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Fig. 3.1.1

provides a fairly accurate description of the observed spectra of all atoms, not just the
hydrogen atom. However, multi-electron atoms involve electron–electron interactions
that are included by adding a “self-consistent field (SCF),” USCF(�r ), to the nuclear
potential Unuc(�r ): U (�r ) = Unuc(�r ) + USCF(�r ), just as in Section 1.4 we added an extra
potential to the Laplace potential UL (see Eq. (1.4.1b)). The nuclear potential Unuc,
like UL, is fixed, while USCF depends on the electronic wavefunctions and has to be
calculated from a self-consistent iterative procedure. In this chapter we will describe
this procedure and the associated conceptual issues.

Consider a helium atom consisting of two electrons bound to a nucleus with two
positive charges +2q. What will the energy levels looks like? Our first guess would be
simply to treat it just like a hydrogen atom except that the potential is

U (�r ) = −2q2/4πε0r

instead of

U (�r ) = −q2/4πε0r

If we solve the Schrödinger equation with U (�r ) = −Zq2/4πε0r we will obtain energy
levels given by

En = −(Z2/n2) E0 = −54.4 eV/n2 (Z = 2)

just as predicted by the simple Bohr model (see Eqs. (2.1.6a, b)). However, this does not
compare well with experiment at all. For example, the ionization potential of helium
is ∼25 eV, which means that it takes a photon with an energy of at least 25 eV to ionize
a helium atom:

He + hν → He+ + e− (3.1.1a)
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n = 3

n = 2
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Free electron

Fig. 3.1.2 Ionization of a neutral helium atom takes approximately 25 eV of energy, suggesting
that the n = 1 level has an energy of −25 eV.

This suggests that the 1s level of a helium atom has an energy of −25 eV and not
−54.4 eV as the simple argument would suggest. How could we be off by over 30 eV?
It is because we did not account for the other electron in helium. If we were to measure
the energy that it takes to remove the second electron from He+

He+ + hν → He++ + e− (3.1.1b)

the result (known as the second ionization potential) is indeed close to 54.4 eV. But the
(first) ionization potential is about 30 eV less, indicating that it takes 30 eV less energy
to pull an electron out of a neutral helium atom than it takes to pull an electron out of
a helium ion (He+) that has already lost one electron. The reason is that an electron in
a helium atom feels a repulsive force from the other electron, which effectively raises
its energy by 30 eV and makes it easier for it to escape (Fig. 3.1.2).

In general, the ionization levels for multielectron atoms can be calculated approx-
imately from the Schrödinger equation by adding to the nuclear potential Unuc(�r ), a
self-consistent field USCF(�r ) due to the other electrons (Fig. 3.1.3):

U (�r ) = Unuc(�r ) + USCF(�r ) (3.1.2)

For all atoms, the nuclear potential arises from the nuclear charge of +Zq located
at the origin and is given by Unuc(�r ) = −Zq2/4πε0r . The self-consistent field arises
from the other (Z − 1) electrons, since an electron does not feel any potential due to
itself. In order to calculate the potential USCF(�r ) we need the electronic charge which
depends on the wavefunctions of the electron which in turn has to be calculated from
the Schrödinger equation containing USCF(�r ). This means that the calculation has to be
done self-consistently as follows.

Step 1. Guess electronic potential USCF(�r ).
Step 2. Find eigenfunctions and eigenvalues from Schrödinger equation.
Step 3. Calculate the electron density n(�r ).
Step 4. Calculate the electronic potential USCF(�r ).
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→→

Fig. 3.1.3 Sketch of (a) the nuclear charge density and the electronic charge density;
(b) potential energy felt by an additional electron due to the nucleus, Unuc(r ), and the other
electrons, USCF(r ). The latter has to be calculated self-consistently.

Step 5. If the new USCF(�r ) is significantly different from last guess, update USCF(�r )
and go back to Step 2. If the new USCF(�r ) is within say 10 meV of the last
guess, the result has converged and the calculation is complete.

For Step 2 we can use essentially the same method as we used for the hydrogen atom,
although an analytical solution is usually not possible. The potential USCF(�r ) is in
general not isotropic (which means independent of θ , φ) but for atoms it can be assumed
to be isotropic without incurring any significant error. However, the dependence on r
is quite complicated so that no analytical solution is possible. Numerically, however,
it is just as easy to solve the Schrödinger equation with any U(r) as it is to solve the
hydrogen atom problem with U(r) ∼ 1/r.

For Step 3 we have to sum up the probability distributions for all the occupied
eigenstates:

n(�r ) =
∑
occ α

|�α(�r )|2 =
∑

occ n,l,m

∣∣∣∣ fn(r )

r

∣∣∣∣2

|Ylm(θ, φ)|2 (3.1.3)
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∞r + r

Fig. 3.1.4

If we assume the charge distribution to be isotropic, we can write

σ (r ) ≡
∫

r2 sin θ dθ dφ n(�r ) =
∑

occ n,l,m

| fn(r )|2 (3.1.4)

For Step 4 we can use straightforward electrostatics to show that

USCF(r ) = Z − 1

Z


 q2

4πε0r

r∫
0

dr ′ σ (r ′) + q2

4πε0

∞∫
r

dr ′ σ (r ′)
r ′


 (3.1.5)

The two terms in Eq. (3.1.5) arise from the contributions due to the charge within a
sphere of radius r and that due to the charge outside of this sphere as shown in Fig. 3.1.4.
The first term is the potential at r outside a sphere of charge that can be shown to be
the same as if the entire charge were concentrated at the center of the sphere:

q2

4πε0r

r∫
0

dr ′ σ (r ′)

The second term is the potential at r inside a sphere of charge and can be shown to
be the same as the potential at the center of the sphere (the potential is the same at all
points inside the sphere since the electric field is zero)

q2

4πε0

∞∫
r

dr ′ σ (r ′)
r ′

We obtain the total potential by adding the two components.
To understand the reason for the factor (Z − 1)/Z in Eq. (3.1.5), we note that the

appropriate charge density for each eigenstate should exclude the eigenstate under
consideration, since no electron feels any repulsion due to itself. For example, silicon
has 14 electrons 1s2 2s2 2p6 3s2 3p2 and the self-consistent field includes all but one of
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Fig. 3.1.5 Self-consistent field method applied to the helium atom. (a) Nuclear potential Unuc(r)
and the self-consistent electronic potential USCF(r). (b) Radial probability distribution for the 1s
state in helium and hydrogen.

these electrons – for the 3p level we exclude the 3p electron, for the 3s level we exclude
the 3s electron etc. However, it is more convenient to simply take the total charge
density and scale it by the factor (Z − 1)/Z. This preserves the spherical symmetry of
the charge distribution and the difference is usually not significant. Note that the total
electronic charge is equal to Z:

∞∫
0

dr σ (r ) =
∑

occ n,l,m

1 = Z (3.1.6)

since the radial eigenfunctions are normalized:
∞∫
0

dr |fn(r )|2 = 1.

Helium atom: Figure 3.1.5 shows the potential profile and the probability distribution
for the 1s state of helium obtained using the SCF method we have just described.
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Fig. 3.1.6 Self-consistent field method applied to the silicon atom. The radial probability
distributions for hydrogen 1s level and silicon 1s level and 3p level are shown.

Also shown for comparison is the 1s level of the hydrogen atom, discussed in the
last chapter.

Silicon atom: Figure 3.1.6 shows the probability distribution for the 1s and 3p states of
silicon obtained using the SCF method. Also shown for comparison is the 1s level of the
hydrogen atom. Note that the silicon 1s state is very tightly confined relative to the 3p
state or the hydrogen 1s state. This is typical of core states and explains why such states
remain well-localized in solids, while the outer electrons (like 3p) are delocalized.

3.2 Relation to the multi-electron picture

Multi-electron Schrödinger equation: It is important to recognize that the SCF
method is really an approximation that is widely used only because the correct method
is virtually impossible to implement. For example, if we wish to calculate the eigen-
states of a helium atom with two electrons we need to solve a two-electron Schrödinger
equation of the form

E�(�r1, �r2) =
(

−
--h2

2m
∇2 + U (�r1) + U (�r2) + Uee(�r1, �r2)

)
�(�r1, �r2) (3.2.1)

where �r1 and �r2 are the coordinates of the two electrons and Uee is the potential energy
due to their mutual repulsion: Uee(�r1, �r2) = e2/4πε0|�r1 − �r2|. This is more difficult to
solve than the “one-electron” Schrödinger equation that we have been talking about,
but it is not impossible. However, this approach quickly gets out of hand as we go to
bigger atoms with many electrons and so is seldom implemented directly. But suppose
we could actually calculate the energy levels of multi-electron atoms. How would we
use our results (in principle, if not in practice) to construct a one-electron energy level
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Fig. 3.2.1 One-electron energy levels represent energy differences between the energy levels of
the N-electron atom and the (N − 1)- or the (N + 1)-electron atom. The former (called the
ionization levels) are the filled states from which an electron can be removed while the latter
(the affinity levels) are the empty states to which an electron can be added.

diagram like the ones we have been drawing? The answer depends on what we want
our one-electron energy levels to tell us.

Ionization levels and affinity levels: Our interest is primarily in describing the flow of
current, which involves inserting an electron and then taking it out or vice versa, as we
discussed in Chapter 1. So we would want the one-electron energy levels to represent
either the energies needed to take an electron out of the atom (ionization levels) or the
energies involved in inserting an electron into the atom (affinity levels) (Fig. 3.2.1).

For the ionization levels, the one-electron energies εn represent the difference
between the ground state energy EG(N ) of the neutral N-electron atom and the
nth energy level En(N − 1) of the positively ionized (N − 1)-electron atom:

εn = EG(N ) − En(N − 1) (3.2.2a)

These ionization energy levels are measured by looking at the photon energy needed to
ionize an electron in a particular level. Such photoemission experiments are very useful
for probing the occupied energy levels of atoms, molecules, and solids. However, they
only provide information about the occupied levels, like the 1s level of a helium atom
or the valence band of a semiconductor. To probe unoccupied levels such as the 2s
level of a helium atom or the conduction band of a semiconductor we need an inverse
photoemission (IPE) experiment (see Fig. 3.2.2):

He + e− → He− + hν

with which to measure the affinity of the atom for acquiring additional electrons. To
calculate the affinity levels we should look at the difference between the ground state
energy EG(N ) and the nth energy level En(N + 1) of the negatively ionized (N + 1)-
electron atom:

εn = En(N + 1) − EG(N ) (3.2.2b)
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Fig. 3.2.2 The ionization levels include the repulsive potential from Z − 1 electrons while the
affinity levels include that of Z electrons, so that the latter is higher in energy by the single-electron
charging energy U0.

Note that if we want the energy levels to correspond to optical transitions then we should
look at the difference between the ground state energy EG(N ) and the nth energy level
En(N ) of the N-electron atom, since visible light does not change the total number of
electrons in the atom, just excites them to a higher energy:

εn = En(N ) − EG(N )

There is no a priori reason why the energy gap obtained from this calculation should
correspond to the energy gap obtained from either the ionization or the affinity levels.
In large solids (without significant excitonic effects) we are accustomed to assuming
that the optical gap is equal to the gap between the valence and conduction bands, but
this need not be true for small nanostructures.

Single-electron charging energy: As we have explained above, the straightforward
approach for calculating the energy levels would be to calculate the energies EG(N )
and En(N ± 1) from an N-electron and an (N ± 1)-electron Schrödinger equation
(cf. Eq. (3.2.1) which is a two-electron Schrödinger equation) respectively. This, how-
ever, is usually impossible and the only practical approach for large atoms, molecules,
or solids is to include an effective potential USCF(�r ) in the Schrödinger equation as we
have been discussing.

How do we choose this effective potential? If we use Uee(N ) to denote the total
electron–electron interaction energy of an N-electron system then the appropriate USCF

for the ionization levels is equal to the change in the interaction energy as we go from
an N-electron to an (N − 1)-electron atom:

[USCF]ionization = Uee(N ) − Uee(N − 1) (3.2.3a)

Similarly the appropriate USCF for the affinity levels is equal to the change in the
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interaction energy between an N-electron and an (N + 1)-electron atom:

[USCF]affinity = Uee(N + 1) − Uee(N ) (3.2.3b)

The electron–electron interaction energy of a collection of N electrons is proportional
to the number of distinct pairs:

Uee(N ) = U0 N (N − 1)/2 (3.2.4)

where U0 is the average interaction energy per pair, similar to the single-electron charg-
ing energy introduced in Section 1.4. From Eqs. (3.2.3a, b) and (3.2.4) it is easy to see
that

[USCF]ionization = U0(N − 1) while [USCF]affinity = U0 N (3.2.5)

This means that to calculate the ionization levels of a Z-electron atom, we should use
the potential due to (Z − 1) electrons (one electron for helium) as we did in the last
section. But to calculate the affinity levels we should use the potential due to Z electrons
(two electrons for helium). The energy levels we obtain from the first calculation are
lower in energy than those obtained from the second calculation by the single-electron
charging energy U0.

As we discussed in Section 1.5, the single-electron charging energy U0 depends on
the degree of localization of the electronic wavefunction and can be several electron-
volts in atoms. Even in nanostructures that are say 10 nm or less in dimension, it can
be quite significant (that is, comparable to kBT).

Typically one uses a single self-consistent potential

USCF = ∂Uee/∂ N = U0 N − (U0/2) (3.2.6)

for all levels so that the ionization levels are (U0/2) lower while the affinity levels are
(U0/2) higher than the energy levels we calculate. One important consequence of this is
that even if an SCF calculation gives energy levels that are very closely spaced compared
to kBT (see Fig. 3.2.3a), a structure may not conduct well, because the one-electron
charging effects will create a “Coulomb gap” between the occupied and unoccupied
levels (Fig. 3.2.3b). Of course, this is a significant effect only if the single-electron
charging energy U0 is larger than kBT.

Hartree approximation: In large conductors (large R) U0 is negligible and the dis-
tinction between Z and (Z − 1) can be ignored. The self-consistent potential for both
ionization and affinity levels is essentially the same and the expression

USCF = ∂Uee/∂ N (3.2.7)
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(a) (b)

Fig. 3.2.3

can be generalized to obtain the standard expression used in density functional theory
(DFT):

USCF(�r ) = ∂Uee

∂[n(�r )]
(3.2.8)

which tells us that the self-consistent potential at any point �r is equal to the change in
the electron–electron interaction energy due to an infinitesimal change in the number
of electrons at the same point. If we use the standard expression for Uee from classical
electrostatics

Uee = 1

2

∫
d�r

∫
d�r ′ q2n(�r )n(�r ′)

4πε | �r − �r ′| (3.2.9)

Equation (3.2.8) yields the Hartree approximation, UH(�r ) for the self-consistent
potential:

UH(�r ) =
∫

d�r ′ q2n(�r ′)
4πε |�r − �r ′| (3.2.10)

which is a solution of the Poisson equation −∇2 UH = −q2n/ε in a homogeneous
medium. Device problems often require us to incorporate complicated boundary con-
ditions including different materials with different dielectric constants. It is then more
convenient to solve a modified form of the Poisson equation that allows a spatially
varying relative permittivity:

−�∇ · (εr∇UH) = q2n/ε0 (3.2.11)

But for atoms, there is no complicated inhomogeneity to account for and it is more
convenient to work with Eq. (3.2.10).

Correlation energy: The actual interaction energy is less than that predicted by
Eq. (3.2.9) because electrons can correlate their motion so as to avoid each other –
this correlation would be included in a many-electron picture but is missed in the
one-particle picture. One way to include it is to write

Uee = 1

2

∫
d�r

∫
d�r ′ e2n(�r )n(�r ′) [1 − g(�r , �r ′)]

4πε |�r − �r ′|
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where g is a correlation function that accounts for the fact that the probability of
finding two electrons simultaneously at �r and �r ′ is not just proportional to n(�r )n(�r ′), but
is somewhat reduced because electrons try to avoid each other (actually this correlation
factor is spin-dependent, but we are ignoring such details). The corresponding self-
consistent potential is also reduced (cf. Eq. (3.2.10)):

USCF =
∫

d�r ′ e2n(�r ′) [1 − g(�r , �r ′)]
4πε |�r − �r ′| (3.2.12)

Much research has gone into estimating the function g(�r , �r ′) (generally referred to as
the exchange-correlation “hole”).

The basic effect of the correlation energy is to add a negative term Uxc(�r ) to the
Hartree term UH(�r ) discussed above (cf. Eq. (3.2.10)):

USCF(�r ) = UH(�r ) + Uxc(�r ) (3.2.13)

One simple approximation, called the local density approximation (LDA) expresses
Uxc at a point in terms of the electron density at that point:

Uxc(�r ) = − q2

4πε0
C[n(�r )] 1/3 (3.2.14)

Here, C is a constant of order one. The physical basis for this approximation is that
an individual electron introduced into a medium with a background electron density
n(r) will push other electrons in its neighborhood, creating a positive correlation “hole”
around it. If we model this hole as a positive sphere of radius r0 then we can estimate
r0 by requiring that the total charge within the sphere be equal in magnitude to that of
an electron:

n(r ) 4πr3
0 /3 = 1 → r0 = 1

C
[n(r )]−1/3

C being a constant of order one. The potential in Eq. (3.2.14) can be viewed as the
potential at the center of this positive charge contained in a sphere of radius r0:

Uxc(�r ) = − q2

4πε0 r0

Much work has gone into the SCF theory and many sophisticated versions of Eq. (3.2.14)
have been developed over the years. But it is really quite surprising that the one-electron
picture with a suitable SCF often provides a reasonably accurate description of multi-
electron systems. The fact that it works so well is not something that can be proved
mathematically in any convincing way. Our confidence in the SCF method stems from
the excellent agreement that has been obtained with experiment for virtually every atom
in the periodic table (see Fig. 3.2.4). Almost all the work on the theory of electronic
structure of atoms, molecules, and solids is based on this method and that is what we
will be using.
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Fig. 3.2.4 Energy levels as a function of the atomic number calculated theoretically using a
self-consistent field method. The results are in excellent agreement with experiment (adapted from
Herman and Skillman (1963)). For a hydrogen atom, the s and p levels are degenerate (that is, they
have the same energy). This is a consequence of the ∼1 / r dependence of the nuclear potential. But
this is not true of the self-consistent potential due to the electrons and, for multi-electron atoms, the
s state has a lower energy than the p state.

3.3 Bonding

One of the first successes of quantum theory was to explain the structure of the periodic
table of atoms by combining the energy levels obtained from the Schrödinger equation
with the Pauli exclusion principle requiring that each level be occupied by no more
than one electron. In Section 3.3.1 we will discuss the general trends, especially the
periodic character of the energy levels of individual atoms. We will then discuss two
bonding mechanisms (ionic (Section 3.3.2) and covalent (Section 3.3.3)) whereby a
pair of atoms, A and B, can lower their overall energy by forming a molecule AB:
E(AB) < E(A) + E(B).
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Fig. 3.3.1 Energy of the outermost s (×) and p levels (◦) of the first 86 elements of the periodic
table excluding the d- and f-shell transition metals (Z = 21–28, 39–46, and 57–78). The numbers
are taken from Harrison (1999) and Mann (1967).

3.3.1 Valence electrons

It is important to note that only the electrons in the outermost shell, referred to as the
valence electrons, participate in the bonding process. The energies of these valence
electrons exhibit a periodic variation as shown in Fig. 3.3.1 for the first 86 atoms of
the periodic table from hydrogen (atomic number Z = 1) to radon (Z = 86), exclud-
ing the d- and f-shell transition metals (see Table 3.3.1). The main point to notice is
that the energies tend to go down as we go across a row of the periodic table from
lithium (Li) to neon (Ne), increase abruptly as we step into the next row with sodium
(Na) and then decrease as we go down the row to argon (Ar). This trend is shown by
both the s and p levels and continues onto the higher rows. Indeed this periodic variation
in the energy levels is at the heart of the periodic table of the elements.

3.3.2 Ionic bonds

Ionic bonds are typically formed between an atom to the left of the periodic table (like
sodium, Na) and one on the right of the periodic table (like chlorine, Cl). The energy
levels of Na and Cl look roughly as shown in Fig. 3.3.2. It seems natural for the 3s
electron from Na to “spill over” into the 3p levels of Cl, thereby lowering the overall
energy as shown. Indeed it seems “obvious” that the binding energy, Ebin, of NaCl
would be

Ebin = E(Na) + E(Cl) − E(Na+Cl−) = 12.3 − 5.1 = 7.2 eV.
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Fig. 3.3.2 Formation of Na+Cl− from individual Na and Cl atoms with a 3s electron from Na
“spilling over” into the 3p levels of Cl thereby lowering the overall energy. This is only part of the
story, since the overall energetics also includes the electrostatic energy stored in the microscopic
capacitor formed by the two ions as explained in the text.

But this argument is incomplete because we also need to consider the change in
the electrostatic energy due to the bonding. The correct binding energy is more
like 4 eV.

The point is that the energy levels we have drawn here are all ionization levels. The
energy needed to create a sodium ion is given by its ionization potential (IP)

E(Na+) − E(Na) = IP(Na) = 5 eV (3.3.1a)

But the energy needed to create a chlorine ion is given by the electron affinity (EA) of
Cl and this includes an extra charging energy U0:

E(Cl) − E(Cl−) = EA(Cl) = IP(Cl) − U0 = 13.8 eV − U0 (3.3.1b)

Combining Eqs. (3.3.1a) and (3.3.1b) we obtain

E(Na) + E(Cl) − E(Na+) − E(Cl−) = 8.8 eV − U0 (3.3.2)

However, this is not the binding energy of NaCl. It gives us the energy gained in
converting neutral Na and neutral Cl into a Na+ and a Cl− ion completely separated
from each other. If we let a Na+ and a Cl− ion that are infinitely far apart come together
to form a sodium chloride molecule, Na+Cl−, it will gain an energy U ′

0 in the process.

E(Na+) + E(Cl−) − E(Na+Cl−) = U ′
0

so that the binding energy is given by

Ebin = E(Na) + E(Cl) − E(Na+Cl−) = 8.8 eV − U0 + U ′
0 (3.3.3)

U0 − U ′
0 is approximately 5 eV, giving a binding energy of around 4 eV. The numerical

details of this specific problem are not particularly important or even accurate. The
main point I wish to make is that although the process of bonding by electron transfer
may seem like a simple one where one electron “drops” off an atom into another with
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Fig. 3.3.3 Formation of H2 from individual H atoms with a bonding level EB and an anti-bonding
level EA.

a lower energy level, the detailed energetics of the process require a more careful
discussion. In general, care is needed when using one-electron energy level diagrams
to discuss electron transfer on an atomic scale.

3.3.3 Covalent bonds

We have just seen how a lowering of energy comes about when we bring together
an atom from the left of the periodic table (like sodium) and one from the right (like
chlorine). The atoms on the right of the periodic table have lower electronic energy
levels and are said to be more electronegative than those on the left. We would expect
electrons to transfer from the higher energy levels in the former to the lower energy
levels in the latter to form an ionic bond.

However, this argument does not explain covalent bonds which involve atoms with
roughly the same electronegativity. The process is a little more subtle. For example, it
is hard to see why two identical hydrogen atoms would want to form a H2 molecule,
since no lowering of energy is achieved by transferring an electron from one atom to
the other. What happens is that when the two atoms come close together the resulting
energy levels split into a bonding level (EB) and an anti-bonding level (EA) as shown
in Fig. 3.3.3. Both electrons occupy the bonding level which has an energy lower than
that of an isolated hydrogen atom: EB < E0.

How do we calculate EB? By solving the Schrödinger equation:

Eα�α(�r ) =
(

−
--h2

2m
∇2 + UN(�r ) + UN′(�r ) + USCF(�r )

)
�α(�r ) (3.3.4)

where UN(r ) and UN′(r ) are the potentials due to the left and the right nuclei respectively
and USCF(r) is the potential that one electron feels due to the other. To keep things simple
let us ignore USCF(r) and calculate the electronic energy levels due to the nuclear
potentials alone:

Eα0�α0(�r ) =
(

−
--h2

2m
∇2 + UN(�r ) + UN′(�r )

)
�α0(�r ) (3.3.5)
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Fig. 3.3.4 Various energies as a function of the nuclear distance R. ×××, approximate
electron–electron repulsive energy (Ue,e′ ). Solid curve, nucleus–nucleus repulsive energy (UN, N′ ).
Dashed curve, EB0−E0; energy of the bonding level in a H2 molecule relative to the 1s level in a
hydrogen atom calculated approximately from the Schrödinger equation without any
self-consistent potential. ++++, binding energy of a H2 molecule relative to two hydrogen atoms
estimated from 2(EB0−E0) + UN,N′ + Ue,e′ .

The lowest energy solution to Eq. (3.3.5) can be written approximately as

EB0 = E0 + a + b

1 + s
(3.3.6)

where

a = −2E0
1 − (1 + R)e−2R

R

b = −2E0(1 + R) e−R

s = e−R[1 + R + (R
2
/3)]

R ≡ R/a0

R being the center-to-center distance between the hydrogen atoms.
Let us now try to understand the competing forces that lead to covalent bonding.

The dashed curve in Fig. 3.3.4 shows EB0 − E0 versus the bond length R as given
by Eq. (3.3.6). Experimentally, the bond length R for a H2 molecule is 0.074 nm,
indicating that the overall energy is a minimum for this value of R. Since the energy
keeps decreasing as R is decreased, one might wonder why the two hydrogen atoms do
not just sit on top of each other (R = 0). To answer this question we need to calculate the
overall energy which should include the electron–electron repulsion (note that USCF(r)
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was left out from Eq. (3.3.6)) as well as the nucleus–nucleus repulsion. To understand
the overall energetics let us consider the difference in energy between a hydrogen
molecule (H2) and two isolated hydrogen atoms (2H).

The energy required to assemble two separate hydrogen atoms from two protons
(N, N′) and two electrons (e, e′) can be written as

E(2H) = Ue,N + Ue′,N′ = 2E0 (3.3.7a)

The energy required to assemble an H2 molecule from two protons (N, N′) and two
electrons (e, e′) can be written as

E(H2) = UN,N′ + Ue,e′ + Ue,N + Ue,N′ + Ue′,N + Ue′,N′ (3.3.7b)

Equation (3.3.6) gives the quantum mechanical value of (Ue,N + Ue,N′) as well as
(Ue′,N + Ue′,N′) as EB0. Hence

E(H2) = UN,N′ + Ue,e′ + 2EB0 (3.3.7c)

The binding energy is the energy it takes to make the hydrogen molecule dissociate
into two hydrogen atoms and can be written as

Ebin = E(H2) − E(2H) = 2(EB0 − E0) + UN,N′ + Ue,e′ (3.3.8)

This is the quantity that ought to be a minimum at equilibrium and it consists of three
separate terms. Eq. (3.3.6) gives us only the first term. The second term is easily written
down since it is the electrostatic energy between the two nuclei, which are point charges:

UN,N′ = q2/4πε0 R (3.3.9a)

The electrostatic interaction between the two electrons should also look like q2/4πε0 R
for large R, but should saturate to ∼q2/4πε0a0 at short distances since the electronic
charges are diffused over distances ∼a0. Let us approximate it as

Ue,e′ ∼= q2/4πε0

√
R2 + a2

0 (3.3.9b)

noting that this is just an oversimplified approximation to what is in general a very dif-
ficult quantum mechanical problem – indeed, electron–electron interactions represent
the central outstanding problem in the quantum theory of matter.

The solid curve in Fig. 3.3.4 shows UN,N′ (Eq. (3.3.9a)), while the ××× curve shows
Ue,e′ (Eq. (3.3.9b)). The +++ curve shows the total binding energy estimated from
Eq. (3.3.8). It has a minimum around 0.1 nm, which is not too far from the experimental
bond length of 0.074 nm. Also the binding energy at this minimum is ∼4.5 eV, very
close to the actual experimental value. Despite the crudeness of the approximations
used, the basic physics of bonding is illustrated fairly well by this example.
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H H

Fig. 3.3.5 A hydrogen molecule can be viewed as two masses connected by a spring.

Vibrational frequency: The shape of the binding energy vs. R curve suggests that
we can visualize a hydrogen molecule as two masses connected by a spring (Fig.
3.3.5). An ideal spring with a spring constant K has a potential energy of the form
U (R) = K (R − R0)2/2. The binding energy of the hydrogen molecule (see Fig. 3.3.4)
can be approximated as U (R) ∼= U (R0) + K (R − R0)2/2, where the effective spring
constant K is estimated from the curvature [d2U/dR2]R=R0 . Indeed the vibrational
frequency of the H–H bond can be estimated well from the resonant frequency

√
2K/M

of the mass and spring system where M is the mass of a hydrogen atom.

Ionization levels: As we have discussed, the energy levels of a multi-electron system
usually denote the ionization levels, that is the energy it takes to strip an electron from
the system. This means that in the present context the energy level EB for a hydrogen
molecule should represent

EB = E(H2) − E(H+
2 )

Since E(H+
2 ) = UN,N′ + Ue′,N + Ue′,N′ , we can write using Eq. (3.3.7b),

EB = Ue,e′ + Ue,N + Ue,N′ = Ue,e′ + EB0 (3.3.10)

It is easy to check that for our model calculation (see Fig. 3.3.4) EB0 is nearly 15 eV
below E0, but EB lies only about 4 eV below E0. If we were to include a self-consistent
field USCF(r) in the Schrödinger equation, we would obtain the energy EB which would
be higher (less negative) than the non-interacting value of EB0 by the electron–electron
interaction energy Ue,e′ .

Binding energy: It is tempting to think that the binding energy is given by

Ebin = 2(EB − E0) + UN,N′

since EB includes the electron–electron interaction energy Ue,e′ . However, it is easy to
see from Eqs. (3.3.8) and (3.3.10) that the correct expression is

Ebin = 2(EB − E0) + (UN,N′ − Ue,e′)

The point I am trying to make is that if we include the electron–electron interaction
in our calculation of the energy level EB then the overall energy of two electrons
is NOT 2EB, for that would double-count the interaction energy between the two
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electrons. The correct energy is obtained by subtracting off this double-counted part:
2EB − Ue,e′ .

3.4 Supplementary notes: multi-electron picture

As I mentioned in Section 3.2, the SCF method is widely used because the exact method
based on a multi-electron picture is usually impossible to implement. However, it is
possible to solve the multi-electron problem exactly if we are dealing with a small
channel weakly coupled to its surroundings, like the one-level system discussed in
Section 1.4. It is instructive to recalculate this one-level problem in the multi-electron
picture and compare with the results obtained from the SCF method.

One-electron vs. multi-electron energy levels: If we have one spin-degenerate level
with energy ε, the one-electron and multi-electron energy levels would look as shown
in Fig. 3.4.1. Since each one-electron energy level can either be empty (0) or occupied
(1), multi-electron states can be labeled in the form of binary numbers with a number
of digits equal to the number of one-particle states. N one-electron states thus give
rise to 2N multi-electron states, which quickly diverges as N increases, making a direct
treatment impractical. That is why SCF methods are so widely used, even though they
are only approximate.

Consider a system with two degenerate one-electron states (up-spin and down-spin)
that can either be filled or empty. All other one-electron states are assumed not to
change their occupation: those below remain filled while those above remain empty.
Let us assume that the electron–electron interaction energy is given by

Uee(N ) = (U0/2)N (N − 1) (same as Eq. (3.2.4))

m2

m1  

DrainSource 

I

V 

I 

e
 

E0

11

E0 − e + (U0/2)

10 01

00

One-electron energy levels Multi-electron energy levels 

E0 + e + (U0/2)

Fig. 3.4.1 One-electron vs. multi-electron energy levels in a channel with one spin-degenerate
level having energy ε.
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corresponding to a self-consistent potential (see Eq. (3.2.6))

∂Uee/∂ N = U0 N − (U0/2)

Suppose the number of electrons N0 in the neutral state corresponds to having one of
these states filled. The one-electron energy levels ε can be written as the sum of the
“bare” levels ε̃ (obtained from a Schrödinger equation with just the nuclear potential,
UN) plus the self-consistent potential [∂Uee/∂ N ]N=N0 :

ε = ε̃ + [∂Uee/∂ N ] N=N0 = ε̃ + U0 N0 − (U0/2)

Consider now the multi-electron picture. We have four available multi-electron states
which we can designate as 00, 01, 10, and 11. In the neutral state, the system is in either
the (10) or the (01) state whose total energy we denote as

E(10) = E(01) ≡ E0

We can write the energies of the other multi-electron states as

E(11) = E0 + ε̃ + Uee(N0 + 1) − Uee(N0)

= E0 + ε̃ + U0 N0 = E0 + ε + (U0/2)

and

E(00) = E0 − ε̃ − Uee(N0) + Uee(N0 − 1)

= E0 − ε̃ − U0(N0 − 1) = E0 − ε + (U0/2)

Master equation: In the multi-electron picture, the overall system has different proba-
bilities Pα of being in one of the 2N possible states α and all the probabilities must add
up to one:∑

α

Pα = 1 → P00 + P01 + P10 + P11 = 1 (3.4.1)

We can calculate the individual probabilities by noting that the system is continually
shuffled among these states and under steady-state conditions there must be no net flow
into or out of any state:∑

β

R (α → β) Pα =
∑

β

R (β → α)Pβ (3.4.2)

Knowing the rate constants, we can calculate the probabilities by solving Eq. (3.4.2).
Equations involving probabilities of different states are called master equations. We
could call Eq. (3.4.2) a multi-electron master equation.

The rate constants R(α → β) can be written down assuming a specific model for the
interaction with the surroundings. For example, if we assume that the interaction only
involves the entry and exit of individual electrons from the source and drain contacts
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then for the 00 and 01 states the rate constants are given by

1
f ′
1 + 2

f ′
2

�
01 E0

E0 − ε + (U0/2)
00

� 1 (1 − f ′
1) + 2 (1 − f ′

2)
γ γ γ γ

hhh h

where

f ′
1 ≡ f0(ε1 − µ1) and f ′

2 ≡ f0(ε1 − µ2)

tell us the availability of electrons with energy ε1 = ε − (U0/2) in the source and drain
contacts respectively. The entry rate is proportional to the available electrons, while
the exit rate is proportional to the available empty states. The same picture applies
to the flow between the 00 and the 10 states, assuming that up- and down-spin states
are described by the same Fermi function in the contacts, as we would expect if each
contact is locally in equilibrium.

Similarly we can write the rate constants for the flow between the 01 and the 11
states

γ γ γγ1
f ′′
1 + 2

f ′′
2

�
11 E0 − ε + (U0/2)

E0
01

� 1 (1 − −f ′′
1 ) + 2 (1 f ′′

2 )
h h h h

where

f ′′
1 ≡ f0(ε2 − µ1) and f ′′

2 ≡ f0(ε2 − µ2)

tell us the availability of electrons with energy ε2 = ε + (U0/2) in the source and drain
contacts corresponding to the energy difference between the 01 and 11 states. This is
larger than the energy difference ε between the 00 and 01 states because it takes more
energy to add an electron when one electron is already present due to the interaction
energy U0.

Using these rate constants it is straightforward to show from Eq. (3.4.2) that

P10

P00
= P01

P00
= γ1 f ′

1 + γ2 f ′
2

γ1(1 − f ′
1) + γ2(1 − f ′

2)
(3.4.3a)

and

P11

P10
= P11

P01
= γ1 f ′′

1 + γ2 f ′′
2

γ1(1 − f ′′
1 ) + γ2(1 − f ′′

2 )
(3.4.3b)

Together with Eq. (3.4.1), this gives us all the individual probabilities. Figure 3.4.2
shows the evolution of these probabilities as the gate voltage VG is increased
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Fig. 3.4.2 Evolution of the energy levels of a channel with one spin-degenerate level as the gate
voltage VG is made more positive, holding the drain voltage VD equal to zero. µ = 0, ε = 0.2 eV,
kBT = 0.025 eV, U0 = 0.25 eV, UL = −qVG. Lower plot shows the probabilities of finding the
channel in one of its four states: P00 (°), P01 = P10 (solid) and P11 (×).

holding the drain voltage VD equal to zero. The gate voltage shifts the one-electron level
ε → ε + UL (we have assumed UL = −qVG) and the probabilities are calculated from
Eqs. (3.4.3a, b) and (3.4.1) noting that the Fermi functions are given by

f ′
1 = f0(ε1 + UL − µ1), f ′

2 = f0(ε1 + UL − µ2) (3.4.4a)

f ′′
1 = f0(ε2 + UL − µ1), f ′′

2 = f0(ε2 + UL − µ2) (3.4.4b)
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The system starts out in the 00 state (P00 = 1), shifts to the 01 and 10 states (P01 =
P10 = 0.5) once ε1 + UL drops below µ, and finally goes into the 11 state (P11 = 1)
when ε2 + UL drops below µ.

Relation between the multi-electron picture and the one-electron levels: As I have
emphasized in Section 3.2, one-electron energy levels represent differences between
energy levels in the multi-electron picture corresponding to states that differ by one
electron. Transitions involving the addition of one electron are called affinity levels
while those corresponding to the removal of one electron are called ionization levels.
For example (see Fig. 3.4.2), if the system is in the 00 state then there are two degenerate
one-electron levels ε1 + UL representing

ε1 + UL = E(10) − E(00) = E(01) − E(00) Affinity levels

Once it is in the 10 state there are two one-electron levels

ε1 + UL = E(10) − E(00) Ionization level

and ε2 + UL = E(11) − E(10) Affinity level

In the 11 state there are two degenerate one-electron levels

ε2 + UL = E(11) − E(10) = E(11) − E(01) Ionization levels

Affinity levels lie above µ, while ionization levels lie below µ as shown in Fig. 3.4.2.
This is a very important general concept regarding the interpretation of the one-electron
energy levels when dealing with complicated interacting objects. The occupied (or
ionization) levels tell us the energy levels for removing an electron while the unoccupied
(or affinity) levels tell us the energy levels for adding an extra electron. Indeed that is
exactly how these levels are measured experimentally, the occupied levels by photo-
emission (PE) and the unoccupied levels by inverse photoemission (IPE) as mentioned
in Section 1.1.

Law of equilibrium: Figure 3.4.2 represents an equilibrium calculation with both
source and drain contacts having the same Fermi function: f1 = f2. Equilibrium problems
do not really require the use of a master equation like Eq. (3.4.2). We can use the general
principle of equilibrium statistical mechanics which states that the probability Pα that
the system is in a multi-electron state α with energy Eα and Nα electrons is given by

Pα = 1

Z
exp[−(Eα − µNα)/kBT ] (3.4.5)

where the constant Z (called the partition function) is determined so as to ensure that
the probabilities given by Eq. (3.4.5) for all states α add up to one:

Z =
∑

α

exp[−(Eα − µNα)/kBT ] (3.4.6)
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This is the central law of equilibrium statistical mechanics that is applicable to any
system of particles (electrons, photons, atoms, etc.), interacting or otherwise (see for
example, Chapter 1 of Feynman, 1972). The Fermi function is just a special case of
this general relation that can be obtained by applying it to a system with just a single
one-electron energy level, corresponding to two multi-electron states:

α Nα Eα Pα

0 0 0 1/Z
1 1 ε (1/Z ) exp[(µ − ε)/kBT ]

so that Z = 1 + exp[(µ − ε)/kBT ] and it is straightforward to show that the average
number of electrons is equal to the Fermi function (Eq. (1.1.1)):

N =
∑

α

Nα Pα = P1 = exp[(µ − ε)/kBT ]

1 + exp[(µ − ε)/kBT ]
= f0 [ε − µ]

For multi-electron systems, we can use the Fermi function only if the electrons are
not interacting. It is then justifiable to single out one level and treat it independently,
ignoring the occupation of the other levels. The SCF method uses the Fermi function
assuming that the energy of each level depends on the occupation of the other levels. But
this is only approximate. The exact method is to abandon the Fermi function altogether
and use Eq. (3.4.5) instead to calculate the probabilities of the different multi-particle
states.

One well-known example of this is the fact that localized donor or acceptor levels
(which have large charging energies U0) in semiconductors at equilibrium are occupied
according to a modified Fermi function (ν is the level degeneracy)

f = 1

1 + (1/ν) exp [(ε − µ)/kBT ]
(3.4.7)

rather than the standard Fermi function (cf. Eq. (1.1.1)). We can easily derive this
relation for two spin-degenerate levels (ν = 2) if we assume that the charging energy
U0 is so large that the 11 state has zero probability. We can then write for the remaining
states

α Nα Eα Pα

00 0 0 1/Z
01 1 ε (1/Z ) exp[(µ − ε)/kBT ]
10 1 ε (1/Z ) exp[(µ − ε)/kBT ]

so that Z = 1 + 2 exp[(µ − ε)/kBT ] and the average number of electrons is given by

N =
∑

α

Nα Pα = P01 + P10 = 2 exp[(µ − ε)/kBT ]

1 + 2 exp[(µ − ε)/kBT ]

= 1

1 + (1/2) exp[(ε − µ)/kBT ]
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in agreement with Eq. (3.4.7). This result, known to every device engineer, could thus
be viewed as a special case of the general result in Eq. (3.4.5).

Equation (3.4.5), however, can only be used to treat equilibrium problems. Our
primary interest is in calculating the current under non-equilibrium conditions and that
is one reason we have emphasized the master equation approach based on Eq. (3.4.2).
For equilibrium problems, it gives the same answer. However, it also helps to bring out
an important conceptual point. One often hears concerns that the law of equilibrium
is a statistical one that can only be applied to large systems. But it is apparent from
the master equation approach that the law of equilibrium (Eq. (3.4.5)) is not a property
of the system. It is a property of the contacts or the “reservoir.” The only assumptions
we have made relate to the energy distribution of the electrons that come in from the
contacts. As long as these “reservoirs” are simple, it does not matter how complicated
or how small the “system” is.

Current calculation: Getting back to non-equilibrium problems, once we have solved
the master equation for the individual probabilities, the source current can be obtained
from

I1 = −q
∑

β

(±)R1 (α → β) Pα

+   if b has one more electron than α 

−   if b has one less electron than α 

where R1 represents the part of the total transition rate R associated with the source
contact. In our present problem this reduces to evaluating the expression

I1 = ( − q/--h) (2γ1 f ′
1 P00 − γ1(1 − f ′

1)(P01 + P10)

+ γ1 f ′′
1 (P01 + P10) − 2γ1(1 − f ′′

1 )P11) (3.4.8)

Figure 3.4.3 shows the current–drain voltage (I–VD) characteristics calculated from the
approach just described. The result is compared with a calculation based on the restricted
SCF method described in Section 1.4. The SCF current–voltage characteristics look
different from Fig. 1.4.6a because the self-consistent potential U0(N − N0) has N0 = 1
rather than zero and we have now included two spins. The two approaches agree well for
U0 = 0.025 eV, but differ appreciably for U0 = 0.25 eV, showing evidence for Coulomb
blockade or single-electron charging (see Exercise E.3.6).

The multi-electron master equation provides a suitable framework for the analysis
of current flow in the Coulomb blockade regime where the single-electron charg-
ing energy U0 is well in excess of the level broadening γ1,2 and/or the thermal
energy kBT . We cannot use this method more generally for two reasons. Firstly, the
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(a) U 0 = 0.25 eV (b) U 0 = 0.025 eV

Fig. 3.4.3 Current vs. drain voltage VD calculated assuming VG = 0 with µ = 0, ε = 0.2 eV, kBT =
0.025 eV, γ 1 = γ 2 = 0.005 eV, UL = −qVD / 2. The two approaches (the SCF and the
multi-electron master equation) agree well for U0 = 0.1 eV, but differ appreciably for U0 = 0.25 eV,
showing evidence for Coulomb blockade or single-electron charging.

size of the problem increases exponentially and becomes prohibitive. Secondly, it is
not clear how to incorporate broadening into this picture and apply it to the trans-
port regime where the broadening is comparable to the other energy scales. And
so it remains a major challenge to provide a proper theoretical description of the
intermediate transport regime U0 ∼ γ1,2, kBT : the regime where electronic motion
is “strongly correlated” making a two-electron probability like P(11) very different
from the product of one-electron probabilities like P(01)P(10). A lot of work has
gone into trying to discover a suitable SCF within the one-electron picture that will
capture the essential physics of correlation. For example, the self-consistent potential
USCF = U0�N we have used is the same for all energy levels or orbitals. One could use
an “unrestricted” self-consistent field that is orbital-dependent such that the potential
felt by level j excludes any self-interaction due to the number of electrons nj in that
level:

USCF( j) = U0(�N − �n j ) (3.4.9)

Such approaches can lead to better agreement with the results from the multi-electron
picture but must be carefully evaluated, especially for non-equilibrium problems.

EXERCISES
E.3.1. Use the SCF method (only the Hartree term) to calculate the energy of the 1s level
in a helium atom. (a) Plot the nuclear potential UN(r) and the self-consistent electronic
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potential USCF(r) (cf. Fig. 3.1.4a). (b) Plot the wavefunction for the 1s level in helium
and compare with that for the 1s level in hydrogen (cf. Fig. 3.1.4b).

E.3.2. Use the SCF method (only the Hartree term) to calculate the energies of the 3s
and 3p levels in a silicon atom. Plot the wavefunction for the 1s and 3p levels in silicon
and compare with that for the 1s level in hydrogen (cf. Fig. 3.1.4b).

E.3.3. Plot the approximate binding energy for a hydrogen molecule as a function of
the hydrogen–hydrogen bond length, making use of Eqs. (3.3.6) and (3.3.9a, b) and
compare with Fig. 3.3.4.

E.3.4: In Section 1.2 we obtained the following expression for the current through a
single level

I = q

h

γ1γ2

γ1 + γ2
[ f1 (ε) − f2 (ε)]

and for the average number of electrons

N = γ1 f1 + γ2 f2

γ1 + γ2

by writing a set of rate equations for a single one-electron energy level (without spin
degeneracy). In the multi-electron picture we have two levels “0” and “1” corresponding
to the one-electron level being empty or full respectively. Write down the appropriate
rate equations in this picture and re-derive the expressions for “N” and “I”.

E.3.5: Consider a channel with two spin-degenerate levels assuming the following
parameters: µ = 0, ε = 0.2 eV, kBT = 0.025 eV, γ1 = γ2 = 0.005 eV.
(a) Calculate the number of electrons vs. gate voltage VG, with VD = 0 and UL =

−qVG, using (1) the multi-electron master equation and (2) a restricted SCF
potential given by USCF = U0(N − N0) with N0 = 1. Use two different values
of U0 = 0.025 eV, 0.25 eV.

(b) Calculate the current vs. drain voltage VD assuming VG = 0 with UL = −qVD/2,
using (1) the multi-electron master equation and (2) the restricted SCF potential
given in (a). Use two different values of U0 = 0.025 eV, 0.25 eV and compare with
Fig. 3.4.3.

(c) Repeat (a) and (b) with an unrestricted SCF potential (Eq. (3.4.9)) that excludes
the self-interaction:

Uscf(↑) = U0(�N − �n↑) = U0(�n↓) = U0(n↓ − 0.5)

Uscf(↓) = U0(n↑ − 0.5)

Note: The result may be different depending on whether the initial guess is symmetric,
Uscf(↑) = Uscf(↓) or not, Uscf(↑) �= Uscf(↓).
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E.3.6: In Fig. 3.4.3a (U0 = 0.25 eV) the multi-electron approach yields two current
plateaus: a lower one with ε2 + UL > µ1 > ε1 + UL such that f ′

1 � 1, f ′′
1 � 0 and

an upper one with µ1 > ε2 + UL > ε1 + UL, such that f ′
1 � 1, f ′′

1 � 1. In either case
f ′
2 � 0, f ′′

2 � 0. Show from Eqs. (3.4.3) and (3.4.8) that the current at these plateaus
is given by

2γ1 γ2

2γ1 + γ2
and

2γ1 γ2

γ1 + γ2

respectively.
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We have seen that it is straightforward to calculate the energy levels for atoms using the
SCF method, because the spherical symmetry effectively reduces it to a one-dimensional
problem. Molecules, on the other hand, do not have this spherical symmetry and a more
efficient approach is needed to make the problem numerically tractable. The concept of
basis functions provides a convenient computational tool for solving the Schrödinger
equation (or any differential equation for that matter). At the same time it is also a very
important conceptual tool that is fundamental to the quantum mechanical viewpoint.
In this chapter we attempt to convey both these aspects.

The basic idea is that the wavefunction can, in general, be expressed in terms of a
set of basis functions, um(�r )

�(�r ) =
M∑

m=1

φm um(�r )

We can then represent the wavefunction by a column vector consisting of the expansion
coefficients

�(�r ) → {φ1 φ2 · · · · · · φM}T, ‘T’ denotes transpose

In spirit, this is not too different from what we did in Chapter 2 where we represented
the wavefunction by its values at different points on a discrete lattice:

�(�r ) → {�(�r1) �(�r2) · · · · · · �(�rM )}T

However, the difference is that now we have the freedom to choose the basis functions
um(�r ): if we choose them to look much like our expected wavefunction, we can represent
the wavefunction accurately with just a few terms, thereby reducing the size of the
resulting matrix [H] greatly. This makes the approach useful as a computational tool
(similar in spirit to the concept of “shape functions” in the finite element method
(Ramdas Ram-Mohan, 2002; White et al., 1989)) as we illustrate with a simple example
in Section 4.1.

But the concept of basis functions is far more general. One can view them as the
coordinate axes in an abstract Hilbert space as described in Section 4.2 and we will
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illustrate the power and versatility of this viewpoint using the concept of the density
matrix in Section 4.3 and further examples in Section 4.4.

4.1 Basis functions as a computational tool

The basic formulation can be stated fairly simply. We write the wavefunction in terms
of any set of basis functions um(�r ):

�(�r ) =
∑

m

φm um(�r ) (4.1.1)

and substitute it into the Schrödinger equation E�(�r ) = Hop�(�r ) to obtain

E
∑

m

φm um(�r ) =
∑

m

φm Hop um(�r )

Multiply both sides by u∗
n(�r ) and integrate over all �r to yield

E
∑

m

Snm φm =
∑

m

Hnm φm

which can be written as a matrix equation

E[S]{φ} = [H ]{φ} (4.1.2)

where

Snm =
∫

d�r u∗
n(�r )um(�r ) (4.1.3a)

Hnm =
∫

d�r u∗
n(�r )Hop um(�r ) (4.1.3b)

To proceed further we have to evaluate the integrals and that is the most time-consuming
step in the process. But once the matrix elements have been calculated, it is straight-
forward to obtain the eigenvalues Eα and eigenvectors {�α} of the matrix. The eigen-
functions can then be written down in “real space” by substituting the coefficients back
into the original expansion in Eq. (4.1.1):

�α(�r ) = 1√
Zα

∑
m

φmα um(�r ), �∗
α(�r ) = 1√

Zα

∑
n

φ∗
nα u∗

n(�r ) (4.1.4)

where Zα is a constant chosen to ensure proper normalization:

1 =
∫

d�r �∗
α(�r ) �α(�r ) → Zα =

∑
n

∑
m

φ∗
nα φmα Snm (4.1.5)

Equations (4.1.1)–(4.1.5) summarize the basic mathematical relations involved in the
use of basis functions.
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+ +

UN UN′

R

Fig. 4.1.1 UN and UN′ are the Coulombic potentials due to the left and right nuclei of a
H2 molecule respectively.

A specific example: To understand the underlying physics and how this works in prac-
tice let us look at a specific example. In Section 3.3.3 we stated that the lowest energy
eigenvalue of the Schrödinger equation including the two nuclear potentials (Fig. 4.1.1)
but excluding the self-consistent potential

Eα0 �α0(�r ) =
(

−
--h2

2m
∇2 + UN(�r ) + UN′(�r )

)
�α0(�r ) (4.1.6)

is approximately given by (E1 ≡ −E0 = −13.6 eV)

EB0 = E1 + a + b

1 + s
(4.1.7)

where

a = −2E0
1 − (1 + R0)e−2R0

R0
b = −2E0(1 + R0)e−R0

s = e−R0
[
1 + R0 + (

R2
0

/
3
)]

R0 ≡ R/a0

R being the center-to-center distance between the hydrogen atoms.
We will now use the concept of basis functions to show how this result is obtained

from Eq. (4.1.6).
Note that the potential U(�r ) = UN(�r ) + UN′(�r ) in Eq. (4.1.6) is not spherically sym-

metric, unlike the atomic potentials we discussed in Chapters 2 and 3. This means that
we cannot simply solve the radial Schrödinger equation. In general, we have to solve the
full three-dimensional Schrödinger equation, which is numerically quite challenging;
the problem is made tractable by using basis functions to expand the wavefunction. In
the present case we can use just two basis functions

�α0(�r ) = φL uL(�r ) + φR uR(�r ) (4.1.8)

where uL(�r ) and uR(�r ) represent a hydrogenic 1s orbital centered around the left and
right nuclei respectively (see Fig. 4.1.2).
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H H

uL uR

Fig. 4.1.2 A convenient basis set for the H2 molecule consists of two 1s orbitals centered around
the left and right nuclei respectively.

This means that

E1 uL(�r ) =
(

−
--h2

2m
∇2 + UN(�r )

)
uL(�r ) (4.1.9a)

and

E1uR(�r ) =
(

−
--h2

2m
∇2 + UN′(�r )

)
uR(�r ) (4.1.9b)

The ansatz in Eq. (4.1.8) is motivated by the observation that it clearly describes the
eigenstates correctly if we move the two atoms far apart: the eigenstates are then given
by

(φL φR) = (1 0) and (φL φR) = (0 1)

It seems reasonable to expect that if the bond length R is not too short (compared to the
Bohr radius a0) Eq. (4.1.8) will still provide a reasonably accurate description of the
correct eigenstates with an appropriate choice of the coefficients φL and φR.

Since we have used only two functions uL and uR to express our wavefunction, the
matrices [S] and [H] in Eqs. (4.1.2) are simple (2 × 2) matrices whose elements can be
written down from Eqs. (4.1.3a, b) making use of Eqs. (4.1.9a, b):

S =
[

1 s
s 1

]
and H =

[
E1 + a E1s + b
E1s + b E1 + a

]
(4.1.10)

where

s ≡
∫

d�r u∗
L(�r ) uR(�r ) =

∫
d�r u∗

R(�r ) uL(�r ) (4.1.11a)

a ≡
∫

d(�r ) u∗
L�r UN′(�r ) uL(�r ) =

∫
d�r u∗

R(�r ) UN(�r ) uR(�r ) (4.1.11b)

b ≡
∫

d�r u∗
L(�r ) UN(�r ) uR(�r ) =

∫
d�r u∗

L(�r ) UN′(�r ) uR(�r )

=
∫

d�r u∗
R(�r ) UN(�r ) uL(�r ) =

∫
d�r u∗

R(�r ) UN′(�r ) uL(�r ) (4.1.11c)
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H H H H

(a) (b)

ZZ

Fig. 4.1.3

Hence Eq. (4.1.2) becomes

E

(
φL

φR

)
=

[
1 s
s 1

]−1 [
E1 + a E1s + b
E1s + b E1 + a

] (
φL

φR

)
(4.1.12)

from which it is straightforward to write down the two eigenvalues – the lower one is
called the bonding level (B) and the higher one is called the anti-bonding level (A):

EB = E1 + a + b

1 + s
and EA = E1 + a − b

1 − s
(4.1.13)

The quantities a, b, and s can be evaluated by plugging in the known basis functions
uL(�r ), uR(�r ) and the nuclear potentials UN(�r ) and UN′(�r ) into Eqs. (4.1.11a, b, c). The
integrals can be performed analytically to yield the results stated earlier in Eq. (4.17).

The wavefunctions corresponding to the bonding and anti-bonding levels are given
by

(φL φR)B = (1 1) and (φL φR)A = (1 − 1)

which represent a symmetric (B) (Fig. 4.1.3a) and an antisymmetric (A) (Fig. 4.1.3b)
combination of two 1s orbitals centered around the two nuclei respectively. Both elec-
trons in a H2 molecule occupy the symmetric or bonding state whose wavefunction can
be written as

�B0(�r ) = 1√
Z

[uL(�r ) + uR(�r )] (4.1.14)

where

uL(�r ) = 1√
πa3

0

exp

[−|�r − �rL|
a0

]
�rL = −(R0/2)ẑ

uR(�r ) = 1√
πa3

0

exp

[−|�r − �rR|
a0

]
�rR = +(R0/2)ẑ

The constant Z has to be chosen to ensure correct normalization of the wavefunction:

1 =
∫

d�r �∗
B0(�r ) �B0(�r ) = 2(1 + s)

Z
→ Z = 2(1 + s)
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Fig. 4.1.4 Plot of electron density along the axis joining two hydrogen atoms assuming they are
separated by the equilibrium bond distance of R = 0.074 nm.

The electron density n(�r ) in a H2 molecule is given by |�B0(�r )|2, multiplied by two
since we have two electrons (one up-spin and one down-spin) with this wavefunction.
Figure 4.1.4 shows a plot of the electron density along a line joining the two nuclei.

How can we get accurate results using just two basis functions? If we were to start
from the Schrödinger equation and use a discrete lattice representation as we did in
Chapters 2 and 3, we would need a fairly large number of basis functions per atom. For
example if the lattice points are spaced by 0.5 Å and the size of an atom is 2.5 Å, then
we need 53 = 125 lattice points (each of which represents a basis function), since the
problem is a three-dimensional one. What do we lose by using only one basis function
instead of 125? The answer is that our results are accurate only over a limited range of
energies.

To see this, suppose we were to use not just the 1s orbital as we did previously, but
also the 2s, 2px, 2py, 2pz, 3s, 3px, 3py and 3pz orbitals (see Fig. 4.1.5). We argue that
the lowest eigenstates will still be essentially made up of 1s wavefunctions and will
involve negligible amounts of the other wavefunctions, so that fairly accurate results
can be obtained with just one basis function per atom. The reason is that an off-diagonal
matrix element M modifies the eigenstates of a matrix[

E1 M
M E2

]

significantly only if it is comparable to the difference between the diagonal elements,
that is, if M ≥ |E1 − E2|. The diagonal elements are roughly equal to the energy levels
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1s

2s, 2p 

3s, 3p 

Fig. 4.1.5 Eigenstates of a H2 molecule when the atoms are not too close. All these states could be
used as basis functions for a more accurate treatment of the hydrogen molecule.

of the isolated atoms, so that |E1 − E2| is ∼10 eV if we consider say the 1s and the 2s
levels of a hydrogen atom. The off-diagonal element M depends on the proximity of
the two atoms and for typical covalently bonded molecules and solids is ∼2 eV, which
is smaller than |E1 − E2|. As a result the bonding level is primarily composed of 1s
wavefunctions and our treatment based on a 2 × 2 matrix is fairly accurate. But a proper
treatment of the higher energy levels would require more basis functions to be included.

Ab initio and semi-empirical models: The concept of basis functions is widely used
for ab initio calculations where the Schrödinger equation is solved directly including
a self-consistent field. For large molecules or solids such calculations can be compu-
tationally quite intensive due to the large number of basis functions involved and the
integrals that have to be evaluated to obtain the matrix elements. The integrals arising
from the self-consistent field are particularly time consuming. For this reason, semi-
empirical approaches are widely used where the matrix elements are adjusted through
a combination of theory and experiment. Such semi-empirical approaches can be very
useful if the parameters turn out to be “transferable,” that is, if we can obtain them by
fitting one set of observations and then use them to make predictions in other situations.
For example, we could calculate suitable parameters to fit the known energy levels of
an infinite solid and then use these parameters to calculate the energy levels in a finite
nanostructure carved out of that solid.

4.2 Basis functions as a conceptual tool

We have mentioned that all practical methods for solving the energy levels of molecules
and solids usually involve some sort of expansion in basis functions. However, the
concept of basis functions is more than a computational tool. It represents an important
conceptual tool for visualizing the physics and developing an intuition for what to
expect. Indeed the concept of a wavefunction as a superposition of basis functions is
central to the entire structure of quantum mechanics as we will try to explain next.
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Fig. 4.2.1 (a) An ordinary vector �V in three-dimensional space can be expressed in terms of its
components along x, y, and z. (b) The state vector �(�r ) can be expressed in terms of its components
along the basis functions um(�r ).

Vector space vs. Hilbert space: It is useful to compare Eq. (4.1.1) with the expression
for an ordinary three-dimensional vector �V in terms of the three unit vectors x̂ , ŷ,
and ẑ:

�V = Vx x̂ + Vy ŷ + Vz ẑ ←→ � = φ1u1 + φ2u2 + φ3u3 + · · ·
We can view the wavefunction as a state vector in an N-dimensional space called the
Hilbert space, N being the total number of basis functions um(�r ). The φms in Eq. (4.1.1)
are like the components of the state vector �, while the um(�r )s are the associated unit
vectors along the N coordinate axes. Choosing a different set of basis functions um(�r )
is like choosing a different coordinate system: the components φm along the different
axes all change, though the state vector remains the same. In principle, N is infinite,
but in practice we can often get accurate results with a manageably finite value of N.
We have tried to depict this analogy in Fig. 4.2.1 but it is difficult to do justice to an
N-dimensional vector (N > 3) on two-dimensional paper. In the Dirac notation, which
is very convenient and widely used, the state vector associated with wavefunction �(�r )
is denoted by a “ket” |�〉 and the unit vectors associated with the basis functions um(�r )
are also written as kets |m〉. In this notation the expansion in terms of basis functions
(see Eq. (4.1.1)) is written as

�(�r ) =
∑

m

φm um(�r )
(Dirac notation)−→ |�〉 =

∑
m

φm |m〉 (4.2.1)

Scalar product: A central concept in vector algebra is that of the scalar product:

�A · �B = Ax Bx + Ay By + Az Bz =
∑

m=x,y,z

Am Bm

The corresponding concept in Hilbert space is that of the overlap of any two functions
f (�r ) and g(�r ):∫

d�r f ∗(�r ) g(�r )
(Dirac notation)−→ 〈 f |g〉
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The similarity of the overlap integral to a scalar product can be seen by discretizing the
integral:∫

d�r f ∗(�r ) g(�r ) ∼= a3
∑

m

f ∗(�rm) g(�rm)

In the discrete lattice representation (see Fig. 2.2.1) the “component” fm of f (�r ) along
um(�r ) is given by f (�rm) just as Am represents the component of the vector �A along m̂:∫

d�r f ∗(�r ) g(�r ) ∼= a3
∑

m

f ∗
m gm cf. �A · �B =

∑
m=x,y,z

Am Bm

One difference here is that we take the complex conjugate of one of the functions (this
is not important if we are dealing with real functions) which is represented by the “bra”
〈 f | as opposed to the “ket” |g〉. The scalar product is represented by juxtaposing a
“bra” and a “ket” as in 〈 f |g〉.

Orthogonality: Coordinate systems are said to be orthogonal if n̂ ·m̂ = δnm , where the
indices m and n stand for x, y, or z and δnm is the Kronecker delta which is defined as

δnm = 1 if n = m

= 0 if n �= m (4.2.2)

This is usually true (for example, x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0) but it is possible to work
with non-orthogonal coordinate systems too. Similarly the basis functions um(�r ) are
said to be orthogonal if the following relation is satisfied:∫

d�r u∗
n(�r ) um(�r ) = δnm

(Dirac notation)−→ 〈n|m〉 = δnm (4.2.3a)

Note that the basis functions we used for the hydrogen molecule (see Fig. 4.1.2) are
NON-orthogonal since∫

d�r u∗
L(�r ) uR(�r ) ≡ s = e−R0

[
1 + R0 + (

R2
0

/
3
)] �= 0

In general∫
d�r u∗

n(�r ) um(�r ) = Snm
(Dirac notation)−→ 〈n|m〉 = Snm (4.2.3b)

Orthogonalization: Given a non-orthogonal set of basis functions {un(�r )}, we can
define another set

ũi (�r ) =
∑

n

[S−1/2]ni un(�r ) (4.2.4)
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which will be orthogonal. This is shown as follows∫
d�r ũ∗

i (�r ) ũ j (�r ) =
∑

n

∑
m

[S−1/2]in Snm[S−1/2]mj

= [S−1/2S S−1/2]i j

= δi j

where we have made use of Eq. (4.2.3b). This means that if we use the new set {ũi (�r )}
as our basis, then the overlap matrix [S] = [I], where [I] is the identity matrix which
is a diagonal matrix with ones on the diagonal. This is a property of orthogonal basis
functions which makes them conceptually easier to deal with.

Even if we start with a non-orthogonal basis, it is often convenient to orthogonalize
it. What we might lose in the process is the local nature of the original basis which
makes it convenient to visualize the physics. For example, the {un(�r )} we used for the
hydrogen molecule were localized on the left and right hydrogen atoms respectively.
But the orthogonalized basis {ũi (�r )} will be linear combinations of the two and thus
less local than {un(�r )}. As a rule, it is difficult to find basis functions that are both local
and orthogonal. From here on we will generally assume that the basis functions we use
are orthogonal.

Operators: An operator like Hop acting on a state vector changes it into a different
state vector – we could say that it “rotates” the vector. With ordinary vectors we can
represent a rotation by a matrix:{

A′
x

A′
y

}
=

[
Rxx Rxy

Ryx Ryy

] {
Ax

Ay

}

where for simplicity we have assumed a two-dimensional vector. How do we write down
the matrix [R] corresponding to an operator Rop? The general principle is the following:
Rnm = n̂ · (Rop m̂). For example, suppose we consider an operator that rotates a vector
by an angle θ . We then obtain

Rxx = x̂ · (Rop x̂) = x̂ · (x̂ cos θ + ŷ sin θ ) = cos θ

Ryx = ŷ · (Rop x̂) = ŷ · (x̂ cos θ + ŷ sin θ ) = sin θ

Rxy = x̂ · (Rop ŷ) = x̂ · (−x̂ sin θ + ŷ cos θ ) = −sin θ

Ryy = ŷ · (Rop ŷ) = ŷ · (−x̂ sin θ + ŷ cos θ ) = cos θ

The matrix representation for any operator Aop in Hilbert space is written using a similar
prescription:

[A]nm =
∫

d�r u∗
n(�r ) (Aop um(�r ))

(Dirac notation)−→ [A]nm = 〈n|Aop m〉 (4.2.5)

Constant operator: What is the matrix representing a constant operator, one that
simply multiplies a state vector by a constant C? In general, the answer is
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[C]nm = C
∫

d�r u∗
n(�r ) um(�r ) = C[S]nm (4.2.6)

which reduces to C [I] for orthogonal bases.

Matrix representation of the Schrödinger equation: The matrix representation of
the Schrödinger equation obtained in the last section (see Eqs. (4.1.2), (4.1.3a, b))

E�(�r ) = Hop �(�r ) −→ E[S]{φ} = [H ]{φ} (4.2.7)

can now be understood in terms of the concepts described in this section. Like the
rotation operator in vector space, any differential operator in Hilbert space has a matrix
representation. Once we have chosen a set of basis functions, Hop becomes the matrix
[H] while the constant E becomes the matrix E[S]:

[S]nm = 〈n|m〉 ≡
∫

d�r u∗
n(�r ) um(�r ) (4.2.8a)

[H ]nm = 〈n|Hop m〉 ≡
∫

d�r u∗
n(�r ) (Hop um(�r )) (4.2.8b)

We could orthogonalize the basis set following Eq. (4.2.5), so that in terms of the
orthogonal basis {ũi (�r )}, the Schrödinger equation has the form of a standard matrix
eigenvalue equation:

E{φ̃} = [H̃ ]{φ̃}

where the matrix elements of [H̃ ] are given by

[H̃ ]i j =
∫

d�r ũ∗
i (�r ) (Hop ũ j (�r ))

Transformation of bases: Suppose we have expanded our wavefunction in one basis
and would like to change to a different basis:

�(�r ) =
∑

m

φm um(�r ) −→ �(�r ) =
∑

i

φ′
i u′

i (�r ) (4.2.9)

Such a transformation can be described by a transformation matrix [C] obtained by
writing the new basis in terms of the old basis:

u′
i (�r ) =

∑
m

Cmi um(�r ) (4.2.10)

From Eqs. (4.2.9) and (4.2.10) we can show that

φm =
∑

i

Cmi φ′
i −→ {φ} = [C]{φ′} (4.2.11a)
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Similarly we can show that any matrix [A′] in the new representation is related to the
matrix [A] in the old representation by

A′
j i =

∑
j

∑
i

C∗
nj Anm Cmi −→ [A′] = [C]+ [A][C] (4.2.11b)

Unitary transformation: There is a special class of transformations which conserves
the “norm” of a state vector, that is∑

m

φ∗
m φm =

∑
i

φ′∗
i φ′

i −→ {φ}+{φ} = {φ′}+{φ′} (4.2.12)

Substituting for {φ} from Eq. (4.2.11a) into Eq. (4.2.12)

{φ′}+[C]+[C]{φ′} = {φ′}+{φ′} −→ [C]+[C] = I (4.2.13)

A matrix [C] that satisfies this condition (Eq. (4.2.13)) is said to be unitary and the
corresponding transformation is called a unitary transformation.

Note that for a unitary transformation, [C]+ = [C]−1, allowing us to write an inverse
transformation from Eq. (4.2.11b) simply as [A] = [C][A′][C]+.

Hermitian operators: The matrix [A] representing a Hermitian operator Aop is
Hermitian (in any representation) which means that it is equal to its conjugate transpose
[A]+:

[A] = [A]+, i.e. Amn = A∗
nm (4.2.14)

If Aop is a function like U (�r ) then it is easy to show that it will be Hermitian as long as
it is real:

[U ]∗mn =
[∫

d�r u∗
m(�r ) U (�r ) un(�r )

]∗
= [U ]nm

If Aop is a differential operator like d/dx or d2/dx2 then it takes a little more work to check
if it is Hermitian or not. An easier approach is to use the discrete lattice representation
that we discussed in Chapter 2. Equation (2.3.1) shows the matrix representing d2/dx2

and it is clearly Hermitian in this representation. Also, it can be shown that a matrix that
is Hermitian in one representation will remain Hermitian in any other representation.
The Hamiltonian operator is Hermitian since it is a sum of Hermitian operators like
∂2/∂x2, ∂2/∂y2, and U (�r ). An important requirement of quantum mechanics is that
the eigenvalues corresponding to any operator Aop representing any observable must
be real. This is ensured by requiring all such operators Aop to be Hermitian (not just
the Hamiltonian operator Hop which represents the energy) since the eigenvalues of a
Hermitian matrix are real.
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Another useful property of a Hermitian matrix is that if we form a matrix [V] out of
all the normalized eigenvectors

[V ] = [{V1} {V2} · · ·]
then this matrix will be unitary, that is, [V]+[V] = [I]. Such a unitary matrix can be
used to transform all column vectors {φ} and matrices [M] to a new basis that uses the
eigenvectors as the basis:

{φ}new = [V ]+ {φ}old ←→ {φ}old = [V ] {φ}new (4.2.15)

[M]new = [V ]+ [M]old [V ] ←→ [M]old = [V ] [M]new [V ]+

If [V] is the eigenvector matrix corresponding to a Hermitian matrix like [H], then the
new representation of [H] will be diagonal with the eigenvalues Em along the diagonal:

[H ′] = [V ]+[H ][V ] =




E1 0 0 0 · · ·
0 E2 0 0 · · ·
0 0 E3 0 · · ·

· · · · · · · · · · · · · · ·


 (4.2.16)

For this reason the process of finding eigenfunctions and eigenvalues is often referred
to as diagonalization.

4.3 Equilibrium density matrix

The density matrix is one of the central concepts in statistical mechanics, which properly
belongs in Chapter 7. The reason I am bringing it up in this chapter is that it provides an
instructive example of the concept of basis functions. Let me start by briefly explaining
what it means. In Chapter 3 we calculated the electron density, n(�r ), in multi-electron
atoms by summing up the probability densities of each occupied eigenstate α:

n(�r ) =
∑
occ α

|�α(�r )|2 (see Eq.(3.1.3))

This is true at low temperatures for closed systems having a fixed number of elec-
trons that occupy the lowest available energy levels. In general, however, states can be
partially occupied and in general the equilibrium electron density can be written as

n(�r ) =
∑

α

f0(εα − µ)|�α(�r )|2 (4.3.1)

where f0(E) ≡ [1 + exp(E/kBT )]−1 is the Fermi function (Fig. 1.1.3) whose value
indicates the extent to which a particular state is occupied: “0” indicates unoccupied
states, “1” indicates occupied states, while a value between 0 and 1 indicates the average
occupancy of a state that is sometimes occupied and sometimes unoccupied.
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Could we write a “wavefunction” �(�r ) for this multi-electron system such that its
squared magnitude will give us the electron density n(�r )? One possibility is to write it as

�(�r ) =
∑

α

Cα�α(�r ) (4.3.2)

where |Cα|2 = f0(εα − µ). But this is not quite right. If we square the magnitude of
this multi-electron “wavefunction” we obtain

n(�r ) = |�(�r )|2 =
∑

α

∑
β

CαC∗
β�α(�r ) �β(�r )

which is equivalent to Eq. (4.3.1) if and only if,

|Cα|2 = f0(εα − µ) ≡ fα, CαC∗
β = 0, α �= β (4.3.3)

This is impossible if we view the coefficients Cα as ordinary numbers – in that case
CαC∗

β must equal
√

fα fβ and cannot be zero unless both Cα and Cβ are zero. If we
wish to write the multi-electron wavefunction in the form shown in Eq. (4.3.2) we
should view the coefficients Cα as stochastic numbers whose correlation coefficients
are given by Eq. (4.3.3).

So instead of writing a wavefunction for multi-electron systems, it is common to
write down a complete matrix ρ(α, β) indicating the correlation CαC∗

β between every
pair of coefficients. This matrix ρ is called the density matrix and in the eigenstate
representation we can write its elements as (see Eq. (4.3.3))

ρ(α, β) = fα δαβ (4.3.4)

where δαβ is the Kronecker delta defined as

δαβ =
{

1 if α = β

0 if α �= β

We can rewrite Eq. (4.3.1) for the electron density n(�r ) in the form

n(�r ) =
∑

α

∑
β

ρ(α, β) �α(�r ) �∗
β(�r ) (4.3.5)

which can be generalized to define

ρ̃(�r , �r ′) =
∑

α

∑
β

ρ(α, β) �α(�r ) �∗
β(�r ′) (4.3.6)

such that the electron density n(�r ) is given by its diagonal elements:

n(�r ) = [ρ(�r , �r ′)]�r ′=�r (4.3.7)

Now the point I want to make is that Eq. (4.3.6) represents a unitary transformation
from an eigenstate basis to a real space basis. This is seen by noting that the trans-
formation matrix [V] is obtained by writing each of the eigenstates (the old basis) as a
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column vector using the position (the new basis) representation:

[V ]�r ,α = �α(�r )

and that this matrix is unitary: V −1 = V +

⇒ [V −1]α,�r = [V +]α,�r = [V ]∗�r ,α�∗
α(�r )

so that Eq. (4.3.6) can be written in the form of a unitary transformation:

ρ̃(�r , �r ′) =
∑

α

∑
β

V (�r , α)ρ(α, β)V +(β, �r ′) ⇒ ρ̃ = VρV +

This leads to a very powerful concept: The density matrix ρ at equilibrium can be
written as the Fermi function of the Hamiltonian matrix (I is the identity matrix of the
same size as H):

ρ = f0(H − µI ) (4.3.8)

This is a general matrix relation that is valid in any representation. For example, if we
use the eigenstates α of H as a basis then [H] is a diagonal matrix:

[H ] =




ε1 0 0 · · ·
0 ε2 0 · · ·
0 0 ε3 · · ·

· · · · · ·




and so is ρ:

ρ =




f0(ε1 − µ) 0 0 · · ·
0 f0(ε2 − µ) 0 · · ·
0 0 f0(ε3 − µ) · · ·

· · · · · · · · · · · ·




This is exactly what Eq. (4.3.4) tells us. But the point is that the relation given in
Eq. (4.3.8) is valid, not just in the eigenstate representation, but in any representation.
Given the matrix representation [H], it takes just three commands in Matlab to
obtain the density matrix:

[V, D] = eig (H)
rho = 1./(1 + exp((diag(D) – mu)./kT))
rho = V * diag(rho) * V′

The first command calculates a diagonal matrix [D] whose diagonal elements are the
eigenvalues of [H] and a matrix [V] whose columns are the corresponding eigenvectors.
In other words, [D] is the Hamiltonian [H] transformed to the eigenstate basis ⇒ D =
V + H V .
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Fig. 4.3.1 Equilibrium electron density for a 1D box modeled with a discrete lattice of 100 points
spaced by 2 Å.
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The second command gives us the density matrix in the eigenstate representation,
which is easy since in this representation both [H] and [ρ] are diagonal. The third
command then transforms [ρ] back to the original representation.

Figure 4.3.1 shows the equilibrium electron density for a 1D box modeled with a
discrete lattice of 100 points spaced by 2 Å, with µ = 0.25 eV. The Hamiltonian [H] is
a (100 × 100) matrix which can be set up following the prescription in Sections 2.2 and
2.3. The density matrix is then evaluated as described above and its diagonal elements
give us the electron density n(x) (times the lattice constant, a). Note the standing wave
patterns in Figs. 4.3.1c, d which are absent when we use periodic boundary conditions
(Figs. 4.3.1e, f). Figures 4.3.1e and f also show the standing wave patterns in the electron
density when a large repulsive potential

U0δ[x − (L/2)] where U0 = 2 eV nm

is included at the center of the box.
Note that the density matrix can look very different depending on what basis functions

we use. In the eigenstate representation it is diagonal since the Hamiltonian is diagonal,
but in the real-space lattice representation it has off-diagonal elements. In any basis m,
the diagonal elements ρ(m, m) tell us the number of electrons occupying the state m. In
a real-space representation, the diagonal elements ρ(�r , �r ) give us the electron density
n(�r ). The trace (sum of diagonal elements) of ρ, which is invariant in all representations,
gives us the total number of electrons N:

N = Trace(ρ) (4.3.9)

If we are only interested in the electron density, then the diagonal elements of the den-
sity matrix are all we need. But we cannot “throw away” the off-diagonal elements;
they are needed to ensure that the matrix will transform correctly to another represen-
tation. Besides, depending on what we wish to calculate, we may need the off-diagonal
elements too (see Section 4.4.1).

4.4 Supplementary notes

4.4.1 Density matrix

It is common in quantum mechanics to associate every observable A with an operator
Aop for which we can find a matrix representation [A] in any basis. The expectation
value 〈A〉 for this observable (that is, the average value we expect to get in a series of
measurements) is given by

〈A〉 =
∫

d�r �∗(�r )Aop�(�r )
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Substituting for the wavefunction in terms of the basis functions from Eq. (4.3.2), we
can show that

〈A〉 =
∑

α

∑
β

CαC∗
β

∫
d�r �∗

β (�r ) Aop �α (�r )

so that

〈A〉 =
∑

α

∑
β

ραβ Aβα = Trace[ρ A]

We could use this result to evaluate the expectation value of any quantity, even if the
system is out of equilibrium, provided we know the density matrix. But what we have
discussed here is the equilibrium density matrix. It is much harder to calculate the
non-equilibrium density matrix, as we will discuss later in the book.

Plane wave vs. sine–cosine representations: Consider now a conductor of length L
having just two plane wave (pw) states

�+(x) = 1√
L

e+ikx and �−(x) = 1√
L

e−ikx

The current operator in this basis is given by

“+” “−”

[Jop]± = −q

L

[ --hk/m 0
0 −--hk/m

]

and we could write the density matrix as

“+” “−”

[ρ]± =
[

f+ 0
0 f−

]

where f+ and f− are the occupation probabilities for the two states. We wish to transform
both these matrices from the “±” basis to a “cs” basis using cosine and sine states:

�c(x) =
√

2

L
cos kx and �s(x) =

√
2

L
sin kx

It is straightforward to write down the transformation matrix [V] whose columns rep-
resent the old basis (+, −) in terms of the new basis (c, s):

[V ] = 1√
2

[
1 1
+i −i

]
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so that in the “cs” representation

“c” “s”

[ρ]cs = [V ] [ρ]± [V ]+ = 1

2

[
f+ + f− −i( f+ − f−)

−i( f+ − f−) f+ + f−

]
and

“c” “s”

[Jop]cs = [V ][Jop]±[V ]+ =
[

0 −i--hk/mL
+i--hk/mL 0

]
It is easy to check that the current 〈J 〉 = Trace[ρ Jop] is the same in either representation:

〈J 〉 = (−q/L)(--hk/m) [ f+ − f−]

This is expected since the trace is invariant under a unitary transformation and thus
remains the same no matter which representation we use. But the point to note is that
the current in the cosine–sine representation arises from the off-diagonal elements of
the current operator and the density matrix, rather than the diagonal elements. The off-
diagonal elements do not have an intuitive physical meaning like the diagonal elements.
As long as the current is carried by the diagonal elements, we can use a semiclassical
picture in terms of occupation probabilities. But if the “action” is in the off-diagonal
elements then we need a more general quantum framework (I am indebted to A. W.
Overhauser for suggesting this example).

4.4.2 Perturbation theory

Suppose we wish to find the energy levels of a hydrogen atom in the presence of an
electric field F applied along the z-direction. Let us use the eigenstates 1s, 2s, 2px , 2py

and 2pz as our basis set and write down the Hamiltonian matrix. If the field were absent
the matrix would be diagonal:

1s 2s 2px 2py 2pz

[H0] =




E1 0 0 0 0
0 E2 0 0 0
0 0 E2 0 0
0 0 0 E2 0
0 0 0 0 E2




where E0 = 13.6 eV, E1 = − E0, and E2 = – E0/4. The electric field leads to a matrix
[HF] which has to be added to [H]. Its elements are given by

[HF ]nm = q F

∞∫
0

drr2

π∫
0

sin θ dθ

2π∫
0

dφ u∗
n(�r ) r cos θum(�r )
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Using the wavefunctions

u1s =
√

1/πa3
0 e−r/a0

u2s =
√

1/32πa3
0

(
2 − r

a0

)
er/2a0

u2px =
√

1/16πa3
0

(
r

a0

)
e−r/2a0 sin θ cos φ

u2py =
√

1/16πa3
0

(
r

a0

)
e−r/2a0 sin θ sin φ

u2pz =
√

1/16πa3
0

(
r

a0

)
e−r/2a0 cos θ

we can evaluate the integrals straightforwardly to show that

1s 2s 2px 2py 2pz

[HF] =




0 0 0 0 A
0 0 0 0 B
0 0 0 0 0
0 0 0 0 0
A B 0 0 0




where A and B are linear functions of the field:

A = (128
√

2/243)a0 F, B = −3a0 F

Hence

1s 2s 2pz 2px 2py

[H0] + [HF] =




E1 0 A 0 0
0 E2 B 0 0
A B E2 0 0
0 0 A E2 0
0 0 A 0 E2




Note that we have relabeled the rows and columns to accentuate the fact that 2px and
2py levels are decoupled from the rest of the matrix and are unaffected by the field,
while the 1s and 2s and 2pz levels will be affected by the field.

Degenerate perturbation theory: If the field were absent we would have one eigen-
value E1 and four degenerate eigenvalues E2. How do these eigenvalues change as we
turn up the field? As we have mentioned before, the eigenvalues are more or less equal
to the diagonal values unless the off-diagonal term Hmn becomes comparable to the
difference between the corresponding diagonal terms (Hmm − Hnn). This means that
whenever we have two degenerate eigenvalues (that is, Hmm − Hnn = 0) even a small
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Fig. 4.4.1 Energy of 2s – 2pz levels due to an applied electric field F. The solid lines show the
results obtained by direct diagonalization while ◦ and × show perturbation theory results
E = E2 ± B.

off-diagonal element Hmn has a significant effect. We thus expect the 2s and 2pz levels
to be significantly affected by the field since they are degenerate to start with. We can
get a very good approximation for these eigenvalues simply by looking at a subset of
the [H] matrix containing just these levels:

2s 2pz

[H0] + [HF] =
[

E2 B
B E2

]

It is easy to show that the eigenvalues are E = E2 ± B and the corresponding eigenvectors
are

|2s〉 − |2pz〉 and |2s〉 + |2pz〉

This approximate approach (known as degenerate perturbation theory) describes the
exact eigenvalues quite well (see Fig. 4.4.1) as long as the off-diagonal elements (like
A) coupling these levels to the other levels are much smaller than the energy difference
between these levels (like E2 − E1).

Non-degenerate perturbation theory: How is the 1s eigenvalue affected? Since there
are no other degenerate levels the effect is much less and to first order one could simply
ignore the rest of the matrix:

1s

[H0] + [HF] = [E1]
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Fig. 4.4.2 Energy of 1s level due to an applied electric field F. The solid curve shows the results
obtained by direct diagonalization while the crosses denote the perturbation theory results
E = E1 + (A2/(E1 − E2)).

and argue that the eigenvalue remains E1. We could do better by “renormalizing” the
matrix as follows. Suppose we partition the [H] matrix and write

[H ] {φ} = E{φ} −→
[

H11 H12

H21 H22

]{
φ1

φ2

}
= E

{
φ1

φ2

}

where [H11] denotes the part of the matrix we wish to keep (the 1s block in this case).
It is easy to eliminate {φ2} to obtain

[H ′] {φ1} = E{φ1}
where

[H ′] = [H11] + [H12][EI − H22]−1 H21

I being an identity matrix of the same size as H22. We haven’t gained much if we still
have to invert the matrix EI − H22 including its off-diagonal elements. But to lowest
order we can simply ignore the off-diagonal elements of H22 and write down the inverse
by inspection. In the present case, this gives us

[H ′] ≈ E1 + (0 A)

[
1/(E − E2) 0

0 1/(E − E2)

] (
0
A

)
= E1 + A2

E − E2

To lowest order, the eigenvalue E is approximately equal to E1, so that

[H ′] ≈ E1 + (A2/(E1 − E2))

which shows that the correction to the eigenvalue is quadratic for non-degenerate states,
rather than linear as it is for degenerate states. This approximate approach (known as
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non-degenerate perturbation theory) describes the exact eigenvalues quite well (see
Fig. 4.4.2).

EXERCISES
E.4.1. Plot the electron density n(x) in a hydrogen molecule along the axis joining the
two hydrogen atoms assuming they are separated by the equilibrium bond distance of
R = 0.074 nm and compare your result with Fig. 4.1.4.

E.4.2. Calculate the equilibrium electron density n(x) in a one-dimensional box modeled
with discrete lattice of 100 points spaced by 2 Å and compare with each of the results
shown in Fig. 4.3.1c–f.

E.4.3. Consider a set of triangular basis functions on a one-dimensional discrete lattice
with a lattice constant “a”.

xa

......

(a) Calculate the matrix elements of the overlap matrix [S] from Eq. (4.1.3a).
(b) Calculate the matrix elements of the Hamiltonian matrix [H] from Eq. (4.1.3b),

assuming that Hop = (--h2/2m)∂2/∂x2.
This is a special case of the finite element method often used in the literature. See for
example, Ramdas Ram-Mohan (2002) and White et al. (1989). How does it compare
with the finite difference method discussed in Section 2.2?

E.4.4. Find the eigenvalues of the matrix


E1 0 A 0 0
0 E2 B 0 0
A B E2 0 0
0 0 0 E2 0
0 0 0 0 E2




where E1 = −E0, E2 = −E0/4(E0 = 13.6 eV) and A = (128
√

2/243)a0 F, B =
−3a0 F and plot as a function of the electric field F. Compare with the perturbation
theory results in Figs. 4.4.1 and 4.4.2.



5 Bandstructure

In the last chapter we saw how the atomic orbitals can be used as a basis to write down
a matrix representation for the Hamiltonian operator, which can then be diagonalized
to find the energy eigenvalues. In this chapter we will show how this approach can be
used to calculate the energy eigenvalues for an infinite periodic solid. We will first use
a few “toy” examples to show that the bandstructure can be calculated by solving a
matrix eigenvalue equation of the form

E(φ0) = [h(�k)](φ0)

where

[h(�k)] =
∑

m

[Hnm]ei�k · ( �dm− �dn )

The matrix [h(�k)] is (b × b) in size, b being the number of basis orbitals per unit cell.
The summation over m runs over all neighboring unit cells (including itself) with which
cell n has any overlap (that is, for which Hnm is non-zero). The sum can be evaluated
choosing any unit cell n and the result will be the same because of the periodicity
of the lattice. The bandstructure can be plotted out by finding the eigenvalues of the
(b × b) matrix [h(�k)] for each value of �k and it will have b branches, one for each
eigenvalue. This is the central result which we will first illustrate using toy examples
(Section 5.1), then formulate generally for periodic solids (Section 5.2), and then use
to discuss the bandstructure of 3D semiconductors (Section 5.3). We discuss spin–orbit
coupling and its effect on the energy levels in semiconductors in Section 5.4. This is
a relativistic effect whose proper treatment requires the Dirac equation as explained
briefly in Section 5.5.

5.1 Toy examples

Let us start with a toy one-dimensional solid composed of N atoms (see Fig. 5.1.1). If
we use one orbital per atom we can write down a (N × N) Hamiltonian matrix using
one orbital per atom (the off-diagonal element has been labeled with a subscript “ss,”

104
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a

1 2 N

Fig. 5.1.1 A one-dimensional solid.

although the orbitals involved need not necessarily be s orbitals):

H = |1〉 |2〉 . . . |N − 1〉 |N 〉
|1〉 E0 Ess 0 Ess

|2〉 Ess E0 0 0
. . . . . . . . .

|N − 1〉 0 0 E0 Ess

|N 〉 Ess 0 Ess E0

(5.1.1)

We have used what is called the periodic boundary condition (PBC), namely, that the
Nth atom wraps around and overlaps the first atom as in a ring. This leads to non-zero
values for the matrix elements H1,N and HN ,1 which would normally be zero if the solid
were abruptly truncated. The PBC is usually not realistic, but if we are discussing the
bulk properties of a large solid then the precise boundary condition at the surface does
not matter and we are free to use whatever boundary conditions make the mathematics
the simplest, which happens to be the PBC.

So what are the eigenvalues of the matrix [H] given in Eq. (5.1.1)? This is essentially
the same matrix that we discussed in Chapter 1 in connection with the finite difference
method. If we find the eigenvalues numerically we will find that they can all be written
in the form (α is an integer)

Eα = E0 + 2Ess cos(kαa) where kαa = α2π/N (5.1.2)

The values of kαa run from −π to +π and are spaced by 2π/N as shown in Fig. 5.1.2. If
N is large the eigenvalues are closely spaced (Fig. 5.1.2a); if N is small the eigenvalues
are further apart (Fig. 5.1.2b).

Why is it that we can write down the eigenvalues of this matrix so simply? The reason
is that because of its periodic nature, the matrix equation E(ψ) = [H ](ψ) consists of a
set of N equations that are all identical in form and can all be written as (n = 1, 2, . . . N )

Eψn = E0ψn + Essψn−1 + Essψn+1 (5.1.3)

This set of equations can be solved analytically by the ansatz:

ψn = ψ0eikna (5.1.4)
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Fig. 5.1.2 The solid curves are plots of E vs. ka/π from Eq. (5.1.2) with E0 = 0, Ess = – 1. The
crosses denote the eigenvalues of the matrix in Eq. (5.1.1) with (a) N = 100 and (b) N = 20.

Substituting Eq. (5.1.4) into (5.1.3) and canceling the common factor exp(ikna) we
obtain

Eψ0 = E0ψ0 + Esse
−ikaψ0 + Esse

ikaψ0

that is

E = E0 + 2Ess cos(ka)

This shows us that a solution of the form shown in Eq. (5.1.4) will satisfy our set of
equations for any value of k. But what restricts the number of eigenvalues to a finite
number (as it must be for a finite-sized matrix)?

This is a result of two factors. Firstly, periodic boundary conditions require the
wavefunction to be periodic with a period of Na and it is this finite lattice size that
restricts the allowed values of k to the discrete set kαa = α2π/N (see Eq. (5.1.2)).
Secondly, values of ka differing by 2π do not represent distinct states on a discrete
lattice. The wavefunctions

exp(ikαx) and exp(i[kα + (2π/a)]x)

represent the same state because at any lattice point xn = na,

exp(ikαxn) = exp(i[kα + (2π/a)]xn)

They are NOT equal between two lattice points and thus represent distinct states in
a continuous lattice. But once we adopt a discrete lattice, values of kα differing by
2π/a represent identical states and only the values of kαa within a range of 2π yield
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Fig. 5.1.3 As Fig. 5.1.2b with E0 = 0 and (a) Ess = −1 and (b) Ess = +1.

independent solutions. In principle, any range of size 2π is acceptable, but it is common
to restrict the values of kαa to the range (sometimes called the first Brillouin zone)

− π ≤ ka < +π for periodic boundary conditions (5.1.5)

It is interesting to note that the finite range of the lattice (Na) leads to a discreteness
(in units of 2π/Na) in the allowed values of k while the discreteness of the lattice (a)
leads to a finite range of allowed k (2π/a). The number of allowed values of k

(2π/a)/(2π/Na) = N

is exactly the same as the number of points in the real space lattice. This ensures that
the number of eigenvalues (which is equal to the number of allowed k values) is equal
to the size of the matrix [H] (determined by the number of lattice points).

When do bands run downwards in k? In Fig. 5.1.2 we have assumed Ess to be
negative which is what we would find if we used, say, Eq. (4.1.11c) to evaluate it (note
that the potentials UL or UR are negative) and the atomic orbitals were s orbitals. But if
the atomic orbitals are px orbitals as shown in Fig. 5.1.3b then the sign of the overlap
integral (Ess) would be positive and the plot of E(k) would run downwards in k as shown.
Roughly speaking this is what happens in the valence band of common semiconductors
which are formed primarily out of atomic p orbitals.

Lattice with a basis: Consider next a one-dimensional solid whose unit cell consists
of two atoms as shown in Fig. 5.1.4. Actually one-dimensional structures like the one
shown in Fig. 5.1.1 tend to distort spontaneously into the structure shown in Fig. 5.1.4 – a
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X XXXX

(a) 

(b) 

Fig. 5.1.4 (a) A one-dimensional solid whose unit cell consists of two atoms. (b) Basic lattice
defining the periodicity of the solid.

phenomenon that is generally referred to as Peierls’ distortion. We will not go into the
energetic considerations that cause this to happen. Our purpose is simply to illustrate
how we can find the bandstructure for a solid whose unit cell contains more than one
basis orbital. Using one orbital per atom we can write the matrix representation of [H]
as

[H ] = |1A〉 |1B〉 |2A〉 |2B〉 |3A〉 |3B〉 . . .

|1A〉 E0 Ess 0 0 0 0 . . .

|1B〉 Ess E0 E ′
ss 0 0 0 . . .

|2A〉 0 E ′
ss E0 Ess 0 0 . . .

|2B〉 0 0 Ess E0 E ′
ss 0 . . .

|3A〉 0 0 0 E ′
ss E0 Ess . . .

|3B〉 0 0 0 0 Ess E0 . . .

(5.1.6)

Unlike the matrix in Eq. (5.1.1) there are two different overlap integrals Ess and E′
ss

appearing alternately. As such the ansatz in Eq. (5.1.4) cannot be used directly. But we
could combine the elements of the matrix into (2 × 2) blocks and rewrite it in the form

[H ] = |1〉 |2〉 |3〉 . . .

|1〉 H11 H12 0 . . .

|2〉 H21 H22 H23 . . .

|3〉 0 H32 H33 . . .

(5.1.7)

where

Hnm =
[

E0 Ess

Ess E0

]
Hn,n+1 =

[
0 0
E ′

ss 0

]
Hn,n−1 =

[
0 Ess

0 0

]

The matrix in Eq. (5.1.7) is now periodic and we can write the matrix equation E(ψ) =
[H ](ψ) in the form

Eφn = Hnnφn + Hn,n−1φn−1 + Hn,n+1φn+1 (5.1.8)

where φn represents a (2 × 1) column vector and the element Hnm is a (2 × 2) matrix.
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Fig. 5.1.5 Bandstructure for the “dimerized” one-dimensional solid shown in Fig. 5.1.4 plotted
from Eq. (5.1.10) using E0 = 0, Ess = 2, E ′

ss = 1.

We can solve this set of equations using the ansatz:

φn = φ0eikna (5.1.9)

Substituting Eq. (5.1.9) into (5.1.8) and canceling the common factor exp[ikna] we
obtain

Eφ0 = Hnnφ0 + Hn,n−1e−ikaφ0 + Hn,n+1eikaφ0

that is

E{φ0} =
[

E0 Ess + E ′
sse

−ika

Ess + E ′
sse

ika E0

]
{φ0}

We can now find the eigenvalues by setting the determinant to zero:

det

[
E0 − E Ess + E ′

sse
−ika

Ess + E ′
sse

ika E0 − E

]
= 0

that is

E = E0 ± (
E2

ss + E ′2
ss + 2Ess E ′

ss cos(ka)
)1/2

(5.1.10)

Equation (5.1.10) gives us an E(k) diagram with two branches as shown in Fig. 5.1.5.

5.2 General result

It is straightforward to generalize this procedure for calculating the bandstructure of
any periodic solid with an arbitrary number of basis functions per unit cell. Consider
any particular unit cell n (Fig. 5.2.1) connected to its neighboring unit cells m by a
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m

Hnm[      ]
n

Fig. 5.2.1 Schematic picture showing a unit cell n connected to its neighboring unit cells m by a
matrix [Hnm] of size (b × b), b being the number of basis functions per unit cell. The configuration
of neighbors will differ from one solid to another, but in a periodic solid the configuration is
identical regardless of which n we choose.

matrix [Hnm] of size (b × b), b being the number of basis functions per unit cell. We
can write the overall matrix equation in the form∑

m

[Hnm]{φm} = E{φn} (5.2.1)

where {φm} is a (b × 1) column vector denoting the wavefunction in unit cell m.
The important insight is the observation that this set of equations can be solved by

the ansatz

{φm} = {φ0} expi�k · �dm (5.2.2)

provided Eq. (5.2.1) looks the same in every unit cell n. We could call this a discrete
version of “Bloch’s theorem” discussed in standard texts like Ashcroft and Mermin
(1976). It is a consequence of the periodicity of the lattice and it ensures that when we
substitute our ansatz Eq. (5.2.2) into Eq. (5.2.1) we obtain

E{φ0} = [h(�k)]{φ0} (5.2.3)

with

[h(�k)] =
∑

m

[Hnm]ei�k · ( �dm− �dn ) (5.2.4)

independent of which unit cell n we use to evaluate the sum in Eq. (5.2.4). This is the
central result underlying the bandstructure of periodic solids. The summation over m
in Eq. (5.2.4) runs over all neighboring unit cells (including itself) with which cell n
has any overlap (that is, for which Hnm is non-zero). The size of the matrix [h(�k)] is
(b × b), b being the number of basis orbitals per unit cell. The bandstructure can be
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a
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L1

L2

Fig. 5.2.2 A finite 2D rectangular lattice with M unit cells stacked along the x-direction and N unit
cells stacked along the y-direction ( �L1 = x̂ Ma, �L2 = ŷNb).

plotted by finding the eigenvalues of the (b × b) matrix [h(�k)] for each value of �k and
it will have b branches, one for each eigenvalue.

Allowed values of k: In connection with the 1D example, we explained how k has
only a finite number of allowed values equal to the number of unit cells in the solid.
To reiterate the basic result, the finite range of the lattice (Na) leads to a discreteness
(in units of 2π/Na) in the allowed values of k while the discreteness of the lattice (a)
leads to a finite range of allowed k(2π/a). How do we generalize this result beyond
one dimension?

This is fairly straightforward if the solid forms a rectangular (or a cubic) lattice as
shown in Fig. 5.2.2. In 2D the allowed values of �k can be written as

[�k]mn = x̂(m 2π/Ma) + ŷ(n 2π/Nb) (5.2.5)

where (m, n) are a pair of integers while M, N represent the number of unit cells stacked
along the x- and y-directions respectively. This seems like a reasonable extension of
the 1D result (cf. Eq. (5.1.2): kα = α(2π/Na)). Formally we could derive Eq. (5.2.5)
by writing ( �L1 = x̂ Ma, �L2 = ŷNb)

�k · �L1 = m 2π → kx = m 2π/Ma

�k · �L2 = n 2π → ky = n 2π/Nb

Brillouin zone: Formally, the general procedure for constructing the Brillouin zone
starts by constructing the reciprocal lattice (Fig. 5.2.3b) in k-space, which can be viewed
as the Fourier transform of the direct lattice. In 1D we know that a set of impulses separ-
ated by a (Fig. 5.2.4a) has a Fourier transform consisting of a set of impulses separated
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by 2π/a (Fig. 5.2.4b). We could then construct the first Brillouin zone centered around
k = 0 by connecting it to the neighboring points on the reciprocal lattice and drawing
their bisectors (Fig. 5.2.4c). Similarly for a 2D rectangular lattice we can construct
a reciprocal lattice and then obtain the first Brillouin zone by drawing perpendicular
bisectors of the lines joining �k = (0, 0) to the neighboring points on the reciprocal
lattice.
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The Brillouin zone obtained from this procedure defines the allowed range of values
of �k

− π ≤ kx a < + π and −π ≤ kyb < + π (5.2.6)

which agrees with what one might write down from a heuristic extension of Eq. (5.1.5).

Reciprocal lattice: In general, if the direct lattice is not rectangular or cubic, it is not
possible to construct the reciprocal lattice quite so simply by inspection. We then need
to adopt a more formal procedure as follows. We first note that any point on a direct
lattice in 3D can be described by a set of three integers (m, n, p) such that

�R = m�a1 + n�a2 + p�a3 (5.2.7a)

where �a1, �a2, �a3 are called the basis vectors of the lattice. The points on the reciprocal
lattice can be written as

�K = M �A1 + N �A2 + P �A3 (5.2.7b)

where (M, N, P) are integers and �A1, �A2, �A3 are determined such that

�A j · �ai = 2πδi j (5.2.8)

δi j being the Kronecker delta function (equal to one if i = j, and equal to zero if i �= j).
Equation (5.2.8) can be satisfied by writing:

�A1 = 2π (�a2 × �a3)

�a1 · (�a2 × �a3)
�A2 = 2π (�a3 × �a1)

�a2 · (�a3 × �a1)
�A3 = 2π (�a1 × �a2)

�a3 · (�a1 × �a2)
(5.2.9)

It is easy to see that this formal procedure for constructing the reciprocal lattice
leads to the lattice shown in Fig. 5.2.3b if we assume the real-space basis vectors to be
�a1 = x̂a, �a2 = ŷb, �a3 = ẑc. Equation (5.2.9) then yields

�A1 = x̂(2π/a) �A2 = ŷ(2π/b) �A3 = ẑ(2π/c)

Using Eq. (5.2.7) we can now set up the reciprocal lattice shown in Fig. 5.2.3b. Of
course, in this case we do not really need the formal procedure. The real value of the
formal approach lies in handling non-rectangular lattices, as we will now illustrate with
a 2D example.

A 2D example: The carbon atoms on the surface of a sheet of graphite (often called
a graphene layer) are arranged in a hexagonal pattern as shown in Fig. 5.2.5a. It can
be seen that the structure is not really periodic. Adjacent carbon atoms do not have
identical environments. But if we lump two atoms together into a unit cell then the
lattice of unit cells is periodic: every site has an identical environment (Fig. 5.2.5b).
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Fig. 5.2.5 (a) Arrangement of carbon atoms on the surface of graphite, showing the unit
cell of two atoms. (b) Direct lattice showing the periodic arrangement of unit cells with basis
vectors �a1 and �a2. (c) Reciprocal lattice with basis vectors �A1 and �A2 determined such that
�A1 · �a1 = �A2 · �a2 = 2π and �A1 · �a2 = �A2 · �a1 = 0. Also shown is the Brillouin zone (shaded)

obtained by drawing the perpendicular bisectors of the lines joining the origin (0, 0) to the
neighboring points on the reciprocal lattice.

Every point on this periodic lattice formed by the unit cells can be described by a set
of integers (m, n, p) where

�R = m�a1 + n�a2 + p�a3 (5.2.10)

with

�a1 = x̂a + ŷb �a2 = x̂a − ŷb �a3 = ẑc

where

a ≡ 3a0/2 and b ≡
√

3a0/2
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Here c is the length of the unit cell along the z-axis, which will play no important role in
this discussion since we will talk about the electronic states in the x–y plane assuming
that different planes along the z-axis are isolated (which is not too far from the truth in
real graphite). The points on the reciprocal lattice in the kx –ky plane are given by

�K = M �A1 + N �A2 (5.2.11)

where (M , N ) are integers and �A1, �A 2 are determined from Eq. (5.2.9):

�A1 = 2π (�a2 × ẑ)

�a1 · (�a2 × ẑ)
= x̂

(π

a

)
+ ŷ

(π

b

)
�A2 = 2π (ẑ × �a1)

�a2 · (ẑ × �a1)
= x̂

(π

a

)
− ŷ

(π

b

)
Using these basis vectors we can construct the reciprocal lattice shown in Fig. 5.2.5c.
The Brillouin zone for the allowed k-vectors is then obtained by drawing the perpen-
dicular bisectors of the lines joining the origin (0, 0) to the neighboring points on the
reciprocal lattice.

The Brillouin zone tells us the range of k values while the actual discrete values
of k have to be obtained from the finite size of the direct lattice, as explained fol-
lowing Eq. (5.2.5). But, for a given value of k how do we obtain the corresponding
energy eigenvalues? Answer: from Eqs. (5.2.3) and (5.2.4). The size of the matrix
[h(�k)] depends on the number of basis functions per unit cell. If we use the four
valence orbitals of carbon (2s, 2px , 2py, 2pz) as our basis functions then we will have
4 × 2 = 8 basis functions per unit cell (since it contains two carbon atoms) and hence
eight eigenvalues for each value of k.

It is found, however, for graphene that the levels involving 2s, 2px , 2py orbitals are
largely decoupled from those involving 2pz orbitals; in other words, there are no matrix
elements coupling these two subspaces. Moreover, the levels involving 2s, 2px , 2py

orbitals are either far below or far above the Fermi energy, so that the conduction and
valence band levels right around the Fermi energy (which are responsible for electrical
conduction) are essentially formed out of the 2pz orbitals.

This means that the conduction and valence band states can be described quite well
by a theory that uses only one orbital (the 2pz orbital) per carbon atom resulting in
a (2 × 2) matrix [h(�k)] that can be written down by summing over any unit cell and
all its four neighboring unit cells (the matrix element is assumed equal to −t between
neighboring carbon atoms and zero otherwise):

[h(�k)] =
[

0 −t
−t 0

]
+

[
0 −t exp(i�k · �a1)
0 0

]
+

[
0 −t exp(i�k · �a2)
0 0

]

+
[

0 0
−t exp(−i�k · �a1) 0

]
+

[
0 −t

−t exp(−i�k · �a2) 0

]
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Defining

h0 ≡ −t(1 + ei�k · �a1 + ei�k · �a2 ) = −t(1 + 2eikx a0 cos kyb0)

we can write

h(�k) =
[

0 h0

h∗
0 0

]

so that the eigenvalues are given by

E = ±|h0| = ±t
√

1 + 4 cos kyb0 cos kx a0 + 4 cos2 kyb0

Note that we obtain two eigenvalues (one positive and one negative) for each value of
�k resulting in two branches in the E(�k) plot (cf. Fig. 5.1.5) – this is what we expect
since we have two basis functions per unit cell. We will discuss the physics of this
E(�k) relation (generally called the energy dispersion relation) in the next chapter when
we discuss carbon nanotubes, which are basically graphite sheets rolled into cylinders.
For the moment our main purpose is to illustrate the procedure for calculating the
bandstructure using a 2D example that involves non-trivial features beyond the 1D
examples from the last section and yet does not pose serious problems with visualization
as the 3D example in the next section.

5.3 Common semiconductors

In this section, I will follow closely the treatment by Vogl et al. (1983). All the common
semiconductors (like gallium arsenide) belong to the diamond structure which has a
unit cell consisting of two atoms, a cation (like gallium) and an anion (like arsenic).
For elemental semiconductors like silicon, both cationic and anionic sites are occupied
by the same atom. For each atom we need to include at least four valence orbitals like
3s, 3px , 3py and 3pz for silicon. It is common to include the next higher orbital (4s for
silicon) as well, giving rise to what is called the sp3s* model. In this model we have five
orbitals per atom leading to ten basis orbitals per unit cell. Consequently the matrices
[h(�k)] and [Hnm] in Eq. (5.2.4) are each (10 × 10) in size. To perform the summation
indicated in Eq. (5.2.4) we need to figure out how the nearest neighbors are located.

The diamond structure consists of two interpenetrating face-centered cubic (FCC)
lattices. For example, if we look at GaAs, we find that the gallium atoms occupy the sites
on an FCC lattice. The arsenic atoms occupy the sites of a different FCC lattice offset
from the previous one by a quarter of the distance along the body diagonal – that is, the
coordinates of this lattice can be obtained by adding (x̂ + ŷ + ẑ)a/4 to those of the first
one. If a gallium atom is located at the origin (0 0 0)a/4 then there will be an arsenic
atom located at (x̂ + ŷ + ẑ)a/4, which will be one of its nearest neighbors. Actually
it will also have three more arsenic atoms as nearest neighbors. To see this consider
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Fig. 5.3.1 x–y face of a face-centered cubic (FCC) lattice, showing the location of atoms.

where the nearest gallium atoms are located. There are four of them on the x–y face
as shown in Fig. 5.3.1 whose coordinates can be written as (x̂ + ŷ)a/2, (−x̂ + ŷ)a/2,
and (−x̂ − ŷ)a/2.

The coordinates of the corresponding arsenic atoms are obtained by adding
(x̂ + ŷ + ẑ)a/4:

(3x̂ + 3ŷ + ẑ)a/4 (3x̂ − ŷ + ẑ)a/4 (−x̂ + 3ŷ + ẑ)a/4 (−x̂ − ŷ + ẑ)a/4

Of these the first three are too far away, but the fourth one is a nearest neighbor of
the gallium atom at the origin. Similarly if we consider the neighboring gallium atoms
on the y–z face and the z–x face we will find two more nearest neighbors, so that the
gallium atom at the origin (0 0 0) has four nearest neighbor arsenic atoms located at

(x̂ + ŷ + ẑ)a/4 (−x̂ − ŷ + ẑ)a/4 (x̂ − ŷ − ẑ)a/4 (−x̂ + ŷ − ẑ)a/4

Every atom in a diamond lattice has four nearest neighbors of the opposite type (cation
or anion) arranged in a tetrahedron.

To see how we perform the summation in Eq. (5.2.4) let us first consider just the
s orbital for each atom. The matrices [h(�k)] and [Hnm] in Eq. (5.2.4) are then each
(2 × 2) in size. We can write [Hnm] as

|sa〉 |sc〉
|sa〉 Esa Ess

|sc〉 Ess Esc

(5.3.1a)

where Esa and Esc are the energies of the s orbitals for the anion and cation respectively,
while Ess represents the overlap integral between an s orbital on the anion and an s
orbital on the cation. The anion in unit cell n overlaps with the cation in unit cell n plus
the cations in three other unit cells m for which

�dm − �dn = (−x̂ − ŷ)a/2 (−ŷ − ẑ)a/2 (−ẑ − x̂)a/2
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Each of these contributes a [Hnm] of the form

|m, sa〉 |m, sc〉
|n, sa〉 0 Ess

|n, sc〉 0 0
(5.3.1b)

Similarly the cation in unit cell n overlaps with the anion in unit cell n plus the anions
in three other unit cells m for which

�dm − �dn = (x̂ + ŷ)a/2 (ŷ + ẑ)a/2 (ẑ + x̂)a/2

Each of these contributes a [Hnm] of the form

|m, sa〉 |m, sc〉
|n, sa〉 0 0
|n, sc〉 Ess 0

(5.3.1c)

Adding up all these contributions we obtain

[h(�k)] = |sa〉 |sc〉
|sa〉 Esa 4Essg0

|sc〉 4Essg∗
0 Esc

(5.3.2)

where

4g0 ≡ 1 + e−i�k · �d1 + e−i�k · �d2 + e−i�k · �d3

with

�d1 ≡ (ŷ + ẑ)a/2 �d2 ≡ (ẑ + x̂)a/2 �d3 ≡ (x̂ + ŷ)a/2

To evaluate the full (10 × 10) matrix [h(�k)] including sp3s∗ levels we proceed
similarly. The final result is

|sa〉 |sc〉 |Xa〉 |Ya〉 |Za〉 |Xc〉 |Yc〉 |Zc〉 |s∗
a 〉 |s∗

c 〉
|sa〉 Esa 4Essg0 0 0 0 4Esapcg1 4Esapcg2 4Esapcg3 0 0

|sc〉 4Essg∗
0 Esc 4Epascg∗

1 4Epascg∗
2 4Epascg∗

3 0 0 0 0 0

|Xa〉 0 4Epascg1 Epa 0 0 4Exx g0 4Exy g3 4Exy g2 0 4Epas∗cg1

|Ya〉 0 4Epascg2 0 Epa 0 4Exy g3 4Exx g0 4Exy g1 0 4Epas∗cg2

|Za〉 0 4Epascg3 0 0 Epa 4Exy g2 4Exy g1 4Exx g0 0 4Epas∗cg3

|Xc〉 4Esapcg∗
1 0 4Exx g∗

0 4Exy g∗
3 4Exy g∗

2 Epc 0 0 4Es∗apcg∗
1 0

|Yc〉 4Esapcg∗
2 0 4Exy g∗

3 4Exx g∗
0 4Exy g∗

1 0 Epc0 4Es∗apcg∗
2 0

|Zc〉 4Esapcg∗
3 0 4Exy g∗

2 4Exy g∗
1 4Exx g∗

0 0 0 E pc 4Es∗apcg∗
3 0

|s∗
a 〉 0 0 0 0 0 4Es∗apcg1 4Es∗apcg2 4Es∗apcg3 Es∗a 0

|s∗
c 〉 0 0 4Epas∗cg∗

1 4Epas∗cg∗
2 4Epas∗cg∗

3 0 0 0 0 Es∗c

(5.3.3)

The factors g1, g2, and g3 look much like the factor g0 obtained above when discussing
only the s orbitals:

4g0 ≡ 1 + e−i�k · �d1 + e−i�k · �d2 + e−i�k · �d3 (5.3.4a)
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Fig. 5.3.2 E(�k) calculated by finding the eigenvalues of the matrix in Eq. (5.3.3) for each value of
�k along the �–X (that is, from �k = 0 to �k = �k = x̂ 2π/a) and �–L (that is, from �k = 0 to �k =
(x̂ + ŷ + ẑ) π/a) directions. The former is plotted along the positive axis and the latter along the
negative axis. Only eight (rather than ten) lines are visible because some are degenerate.

However, the signs of some of the terms are negative:

4g1 ≡ 1 + e−i�k · �d1 − e−i�k · �d2 − e−i�k · �d3 (5.3.4b)

4g2 ≡ 1 − e−i�k · �d1 + e−i�k · �d2 − e−i�k · �d3 (5.3.4c)

4g3 ≡ 1 − e−i�k · �d1 − e−i�k · �d2 + e−i�k · �d3 (5.3.4d)

The negative signs arise because the wavefunction for p orbitals changes sign along
one axis and so the overlap integral has different signs for different neighbors. This
also affects the signs of the overlap integrals appearing in the expression for [h(�k)]
in Eq. (5.2.4): the parameters Ess, Epasc, and Epas∗c are negative, while the remaining
parameters Esapc, Exx , Exy , and Es∗apc are positive. Note that the vectors

�d1 ≡ (ŷ + ẑ)a/2 �d2 ≡ (ẑ + x̂)a/2 �d3 ≡ (x̂ + ŷ)a/2 (5.3.5)

connect the cation in one unit cell to a cation in a neighboring cell (or an anion to
an anion). Alternatively, we could define these vectors so as to connect the nearest
neighbors – this has the effect of multiplying each of the factors g0, g1, g2, and g3 by a
phase factor exp[i�k · �d] where �d = (x̂ + ŷ + ẑ)a/4. This is used by most authors like
Vogl et al. (1983), but it makes no real difference to the result.

Figure 5.3.2 shows the bandstructure E(�k) calculated by finding the eigenvalues of
the matrix in Eq. (5.3.3) for each value of �k along the �–X and �–L directions. We have
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used the parameters for GaAs given in Vogl et al. (1983):

Esa = −8.3431 eV Epa = 1.0414 eV Es∗a = 8.5914 eV
Esc = −2.6569 eV Epc = 3.6686 eV Es∗c = 6.7386 eV
4Ess = −6.4513 eV 4Epasc = −5.7839 eV 4Epas∗c = −4.8077 eV
4Esapc = 4.48 eV 4Es∗apc = 4.8422 eV
4Exx = 1.9546 eV 4Exy = 5.0779 eV

5.4 Effect of spin–orbit coupling

The bandstructure we have obtained is reasonably accurate but does not describe the
top of the valence band very well. To obtain the correct bandstructure, it is necessary
to include spin–orbit coupling.

Spinors: Let us first briefly explain how spin can be included explicitly in the
Schrödinger equation. Usually we calculate the energy levels from the Schrödinger
equation and fill them up with two electrons per level. More correctly we should view
each level as two levels with the same energy and fill them up with one electron per
level as required by the exclusion principle. How could we modify the Schrödinger
equation so that each level becomes two levels with identical energies? The answer is
simple. Replace

E(ψ) = [Hop](ψ) with E

(
ψ

ψ

)
=

[
Hop 0
0 Hop

] (
ψ

ψ

)
(5.4.1)

where

Hop = p2/2m + U (�r ) ( �p ≡ −i--h �∇)

We interpret ψ as the up-spin component and ψ as the down-spin component of
the electronic wavefunction. If we now choose a basis set to obtain a matrix repre-
sentation, the matrix will be twice as big. For example if we were to use just the s
orbital for each atom we would obtain a (4 × 4) matrix instead of the (2 × 2) matrix
in Eq. (5.3.2):

|sa〉 |sc〉 |sa〉 |sa〉
|sa〉 Esa 4Essg0 0 0
|sc〉 4Essg∗

0 Esc 0 0
|s̄a〉 0 0 Esa 4Essg0

|s̄c〉 0 0 4Essg∗
0 Esc

(5.4.2)

Similarly, with all ten orbitals included, the (10×10) matrix becomes a (20 × 20)
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matrix:

[H0(�k)] =
[

h(�k) 0
0 h(�k)

]
(5.4.3)

where [h(�k)] is given by Eq. (5.3.3).

Spin–orbit coupling: If we were to calculate the bandstructure using Eq. (5.4.3) instead
of Eq. (5.3.3) we would get exactly the same result, except that each line would have a
second one right on top of it, which we would probably not even notice if a computer
were plotting it out. But the reason we are doing this is that we want to add something
called spin–orbit coupling to Eq. (5.4.3).

The Schrödinger equation is a non-relativistic equation. For electrons traveling at
high velocities relativistic effects can become significant and we need to use the Dirac
equation. Typically in solids the velocities are not high enough to require this, but the
electric fields are very high near the nuclei of atoms leading to weak relativistic effects
that can be accounted for by adding a spin–orbit correction Hso to the Schrödinger
equation:

E

(
ψ

ψ

)
= [H0]

(
ψ

ψ

)
+ [Hso]

(
ψ

ψ

)
(5.4.4)

where

H0 =
[

p2/2m + U (�r ) 0
0 p2/2m + U (�r )

]
(5.4.5)

and

Hso = q--h

4m2c2

[
Ex py − Ey px (Ey pz − Ez py) − i(Ez px − Ex pz)

(Ey pz − Ez py) − i(Ez px − Ex pz) −(Ex py − Ey px )

]
(5.4.6)

c being the velocity of light in vacuum. The spin–orbit Hamiltonian Hso is often
written as

Hso = q--h

4m2c2
�σ · ( �E × �p) (5.4.7)

where the Pauli spin matrices �σ are defined as

σx =
[

0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(5.4.8)

It is straightforward to show that the two expressions for the spin–orbit Hamiltonian
Hso in Eqs. (5.4.7) and (5.4.6) are identical. I will not try to justify the origin of the
spin–orbit term for this would take us too far afield into the Dirac equation, but the
interested reader may find the brief discussion in Section 5.5 instructive.
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Bandstructure with spin–orbit coupling: We already have the matrix representa-
tion for the non-spin–orbit part of the Hamiltonian, H0 (Eq. (5.4.5)). It is given by
Eq. (5.3.3). We now need to find a matrix representation for Hso and add it to H0. Let us
first see what we would do if we were to just use the s orbitals for each atom. Usually
the spin–orbit matrix elements are significant only if both orbitals are centered on the
same atom, so that we expect a matrix of the form

|sa〉 |sc〉 |s̄a〉 |s̄c〉
|sa〉 a11 0 a12 0
|sc〉 0 c11 0 c12

|s̄a〉 a21 0 a22 0
|s̄c〉 0 c21 0 c22

We would fill up the 11 elements of this matrix by taking the matrix elements of the
11 component of Hso (see Eq. (5.4.6)):

a11 = 〈sa|Ex py − Ey px |sa〉 c11 = 〈sc|Ex py − Ey px |sc〉

To fill up the 12 elements of this matrix we take the matrix elements of the 12 component
of Hso (see Eq. (5.4.6)):

a12 = 〈sa|(Ey pz − Ez py) − i(Ez px − Ex pz)|s̄a〉
c12 = 〈sc|(Ey pz − Ez py) − i(Ez px − Ex pz)|s̄c〉

Similarly we can go on with the 21 and the 22 components. As it turns out, all these
matrix elements can be shown to be zero from symmetry arguments if we assume
the potential U(r) to be spherically symmetric as is reasonable for atomic poten-
tials. The same is true for the s* orbitals as well. However, some of the matrix
elements are non-zero when we consider the X, Y, and Z orbitals. These non-zero
matrix elements can all be expressed in terms of a single number δa for the anionic
orbitals:

|Xa〉 |Ya〉 |Za〉 |X a〉 |Y a〉 |Z a〉
|Xa〉 0 −iδa 0 0 0 δa

|Ya〉 iδa 0 0 0 0 −iδa

|Za〉 0 0 0 −δa iδa 0
|X a〉 0 0 −δa 0 iδa 0
|Y a〉 0 0 −iδa −iδa 0 0
|Z a〉 δa iδa 0 0 0 0

(5.4.9a)
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Fig. 5.4.1 Bandstructure of GaAs calculated (a) taking spin–orbit interaction into account (the
�–X direction is plotted along the positive axis while the �–L direction is plotted along the negative
axis) and (b) from Eq. (5.3.3) without adding the spin–orbit component.

and in terms of a single number δc for the cationic orbitals:

|Xc〉 |Yc〉 |Zc〉 |X c〉 |Y c〉 |Z c〉
|Xc〉 0 −iδc 0 0 0 δc

|Yc〉 iδc 0 0 0 0 −iδc

|Zc〉 0 0 0 −δc iδc 0
|X c〉 0 0 −δc 0 iδc 0
|Y c〉 0 0 −iδc −iδc 0 0
|Z c〉 δc iδc 0 0 0 0

(5.4.9b)

If we were to find the eigenvalues of either of these matrices we would obtain four
eigenvalues equal to +δc (or +δa) and two eigenvalues equal to −2δc (or −2δa). The
splitting between these two sets of levels is 3δc (or 3δa) and is referred to as the spin–orbit
splitting �c (or �a):

�c (or �a) = 3δc (or 3δa) (5.4.10)

The spin–orbit splitting is well-known from both theory and experiment for all the
atoms. For example, gallium has a spin–orbit splitting of 0.013 eV while that for arsenic
is 0.38 eV. It is now straightforward to write down the full matrix representation for
Hso making use of Eqs. (5.4.8) and (5.4.9), adding it to Eq. (5.3.3) and then calculating
the bandstructure. For GaAs we obtain the result shown in Fig. 5.4.1a. For comparison,
in Fig. 5.4.1b we show the results obtained directly from Eq. (5.3.3) without adding
the spin–orbit part. This is basically the same plot obtained in the last section (see
Fig. 5.3.2) except that the energy scale has been expanded to highlight the top of the
valence band.
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Heavy hole, light hole, and split-off bands: The nature of the valence band wave-
function near the gamma point (kx = ky = kz = 0) plays a very important role in
determining the optical properties of semiconductor nanostructures. At the gamma
point, the Hamiltonian matrix has a relatively simple form because only g0 is non-
zero, while g1, g2, and g3 are each equal to zero (see Eq. (5.3.3)). Including spin–orbit
coupling the Hamiltonian decouples into four separate blocks at the gamma point:

Block I:
|sa〉 |sc〉 |sa〉 |sc〉

|sa〉 Esa 4Ess 0 0
|sc〉 4Ess Esc 0 0
|sa〉 0 0 Esa 4Ess

|sc〉 0 0 4Ess Esc

Block II:
|s∗

a 〉 |s∗
c 〉 |s∗

a〉 |s∗
c〉

|s∗
a 〉 Es∗a 0 0 0

|s∗
c 〉 0 Es∗c 0 0

|s∗
a〉 0 0 Es∗a 0

|s∗
c〉 0 0 0 Es∗c

Block III:
|Xa〉 |Ya〉 |Z a〉 |Xc〉 |Yc〉 |Z c〉

|Xa〉 Epa −iδa δa 4Exx 0 0
|Ya〉 iδa Epa −iδa 0 4Exx 0
|Z a〉 δa iδa Epa 0 0 4Exx

|Xc〉 4Exx 0 0 Epc −iδc δc

|Yc〉 0 4Exx 0 iδc Epc −iδc

|Z c〉 0 0 4Exx δc iδc Epc

Block IV:
|X a〉 |Y a〉 |Za〉 |X c〉 |Y c〉 |Zc〉

|X a〉 Epa iδa −δa 4Exx 0 0
|Y a〉 −iδa Epa −iδa 0 4Exx 0
|Za〉 −δa iδa Epa 0 0 4Exx

|X c〉 4Exx 0 0 Epc iδc −δc

|Y c〉 0 4Exx 0 −iδc Epc −iδc

|Zc〉 0 0 4Exx −δc iδc Epc

We can partially diagonalize Blocks III and IV by transforming to the heavy hole (HH),
light hole (LH), and split-off (SO) basis using the transformation matrix

[V ] =

|HHa〉 |LHa〉 |SOa〉 |HHc〉 |LHc〉 |SOc〉
|Xa〉 1/

√
2 1/

√
6 1/

√
3 0 0 0

|Ya〉 i/
√

2 −i/
√

6 −i/
√

3 0 0 0
|Z a〉 0

√
2/3 −1/

√
3 0 0 0

|Xc〉 0 0 0 1/
√

2 1/
√

6 1/
√

3
|Yc〉 0 0 0 i/

√
2 −i/

√
6 −i/

√
3

|Z c〉 0 0 0 0
√

2/3 −1/
√

3
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and the usual rule for transformation, namely, [Hnew] = [V +][H ]old[V ]. The trans-
formed Hamiltonian for Block III looks like

|HHa〉 |LHa〉 |SOa〉 |HHc〉 |LHc〉 |SOc〉
|HHa〉 Epa + δa 0 0 4Exx 0 0
|LHa〉 0 Epa + δa 0 0 4Exx 0
|SOa〉 0 0 Epa − 2δa 0 0 4Exx

|HHc〉 4Exx 0 0 Epc + δc 0 0
|LHc〉 0 4Exx 0 0 Epc + δc 0
|SOc〉 0 0 4Exx 0 0 Epc − 2δc

Note how the three bands are neatly decoupled so that at the gamma point we can label
the energy levels as HH, LH, and SO. As we move away from the gamma point, the
bands are no longer decoupled and the eigenstates are represented by superpositions of
HH, LH, and SO.

Similarly Block IV can be transformed using the transformation matrix

|HHa〉 |LHa〉 |SOa〉 |HHc〉 |LHc〉 |SOc〉
|X a〉 1/

√
2 1/

√
6 1/

√
3 0 0 0

|Y a〉 −i/
√

2 i/
√

6 i/
√

3 0 0 0
|Z a〉 0 −√

2/3 1/
√

3 0 0 0
V = |X c〉 0 0 0 1/

√
2 1/

√
6 1/

√
3

|Y c〉 0 0 0 −i/
√

2 i/
√

6 i/
√

3
|Z c〉 0 0 0 0 −√

2/3 1/
√

3

to obtain

|HHa〉 |LHa〉 |SOa〉 |HHc〉 |LHc〉 |SOc〉
|HHa〉 Epa + δa 0 0 4Exx 0 0
|LHa〉 0 Epa + δa 0 0 4Exx 0
|SOa〉 0 0 Epa − 2δa 0 0 4Exx

|HHc〉 4Exx 0 0 Epc + δc 0 0
|LHc〉 0 4Exx 0 0 Epc + δc 0
|SOc〉 0 0 4Exx 0 0 Epc − 2δc

It is important to note that the eigenstates (which can be identified by looking at the
columns of [V] or [V ]) are not pure up-spin or pure down-spin states. However, we
could view the lower block [V ] as the spin-reversed counterpart of the upper block
[V] since it is straightforward to show that they are orthogonal, as we expect “up” and
“down” spin states to be.
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5.5 Supplementary notes: the Dirac equation

Relativistic electrons are described by the Dirac equation:

E




ψ

ψ

φ

φ


 =




mc2 + U 0 cpz c(px − ipy)
0 mc2 + U c(px + ipy) −cpz

cpz c(px − ipy) −mc2 + U 0
c(px + ipy) −cpz 0 −mc2 + U







ψ

ψ

φ

φ




which can be written compactly as

E

{
�

�

}
=

[
(mc2 + U )I c�σ · �p

c�σ · �p (−mc2 + U )I

] {
�

�

}
(5.5.1)

where

� ≡
{

ψ

ψ

}
and � ≡

{
φ

φ

}

Assuming U = 0 and substituting a plane wave solution of the form(
�

�

)
=

(
�

�

)
ei�k · �r

we can show that the dispersion relation is given by

E(�k) = ±
√

m2c4 + c2--h2k2

which has two branches as shown in Fig. 5.5.1.
The negative branch is viewed as being completely filled even in vacuum. The separa-

tion between the two branches is 2mc2 which is approximately 1 MeV, well outside the
range of energies encountered in solid-state experiments. In high-energy experiments
electrons are excited out of the negative branch into the positive branch resulting in
the creation of electron–positron pairs. But in common solid-state experiments energy
exchanges are less than 10 eV and the negative branch provides an inert background.
At energies around E = mc2, we can do a binomial expansion of Eq. (5.5.1) to obtain
the non-relativistic parabolic relation (apart from an additive constant equal to the
relativistic rest energy mc2):

E(�k) ≈ mc2 + (--h2k2/2m)

Relativistic corrections like the spin–orbit term are obtained by starting from the Dirac
equation and eliminating the component � using approximate procedures valid at
energies sufficiently small compared to mc2.
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E 

k

+mc2

−mc2

Fig. 5.5.1

Non-relativistic approximation to the Dirac equation: Starting from Eq. (5.5.1) we
can show that

E{�} = (mc2 + U ){�} + [c�σ · �p]

[
1

E + mc2 − U

]−1

[c�σ · �p]{�}

Setting E ≈ mc2 on the right-hand side, we obtain the lowest order non-relativistic
approximation

E{�} = (mc2 + U ){�} + [�σ · �p]2

2m
{�} (5.5.2)

which can be simplified to yield Eq. (5.4.1):

(E − mc2){�} =
[

U + p2/2m 0
0 U + p2/2m

]
{�}

noting that

[�σ · �p]2 =
[

p2 0
0 p2

]

Effect of magnetic field: One question we will not discuss much in this book is the
effect of a magnetic field on electron energy levels. The effect is incorporated into the
Dirac equation by replacing �p with �p + q �A:

E

{
�

�

}
=

[
(mc2 + U )I c�σ · ( �p + q �A)
c�σ · ( �p + q �A) (−mc2 + U )I

] {
�

�

}

As before (cf. Eq. (5.5.2)) we can obtain the lowest order non-relativistic approximation

E{�} = (mc2 + U ){�} + [�σ · ( �p + q �A)]2

2m
{�}
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which can be simplified to yield the Pauli equation:

(E − mc2){�} = [U + ( �p + q �A)2/2m][I ]{�} + µB �σ · �B{�}
where µB ≡ q--h/2m (known as the Bohr magneton), �B = �∇ × �A and the second term
on the right-hand side (µB �σ · B) is called the Zeeman term. Note that the spin–orbit
term in Eq. (5.4.7) can be viewed as the Zeeman term due to an effective magnetic field
given by

Bso = ( �E × �p)/2mc2

Indeed, one way to rationalize the spin–orbit term is to say that an electron in an electric
field “sees” this effective magnetic field due to “relativistic effects.” To obtain the spin–
orbit term directly from the Dirac equation it is necessary to go to the next higher order
(see, for example, Sakurai, 1967).

EXERCISES
E.5.1. Set up the (2 × 2) matrix given in Eq. (5.1.10) for the one-dimensional dimerized
toy solid and plot the E(k) relation, cf. Fig. 5.1.5.

E.5.2. Set up the (10 × 10) matrix given in Eq. (5.3.3) using the parameters for GaAs
given at the end of Section 5.3 and plot the dispersion relation E(kx , ky , kz) along �−X
and �−L as shown in Fig. 5.3.2.

E.5.3. Set up the (20 × 20) matrix including the spin–orbit coupling as described in
Section 5.4 for GaAs and plot E vs. k along �−X and �−L for GaAs (�c = 0.013 eV
and �a = 0.38 eV) and compare with Fig. 5.4.1a.

E.5.4. Write down the eigenvalues of the matrix (a, b and c are constants)


a b c 0 c b
b a b c 0 c
c b a b c 0
0 c b a b c
c 0 c b a b
b c 0 c b a




using the principles of bandstructure discussed in this chapter.



6 Subbands

In Chapter 5 we saw that the energy levels Eb(�k) in a periodic solid can labeled in terms
of �k, with the number of branches b equal to the number of basis functions per unit
cell. Strictly speaking, this requires us to assume periodic boundary conditions in all
directions so that the periodicity is preserved everywhere even at the “ends.” Real solids
usually have “ends” where periodicity is lost, but this is commonly ignored as a surface
effect that has no influence on bulk properties. The finite size of actual solids normally
leads to no observable effects, but as we scale down the size of device structures, the
discreteness of energy levels becomes comparable to the thermal energy kBT leading
to experimentally observable effects. Our objective in this chapter is to describe the
concept of subbands which is very useful in describing such “size quantization” effects.
In Section 6.1 we will describe the effect of size quantization on the E(�k) relation
using specific examples. We will then look at its effect on experimentally observable
quantities, like the density of states (DOS), D(E) in Section 6.2 and the number of
subbands or modes, M(E). In Section 6.3 we will see that the maximum conductance
of a wire is proportional to the number of modes around the Fermi energy (E = µ),
the maximum conductance per mode being equal to the fundamental constant G0 ≡
q2/h (Eq. (1.1)) as discussed in the introductory chapter. Finally in Section 6.4, I will
discuss the matter of the appropriate velocity for an electron in a periodic solid. For
free electrons, the wavefunction has the form of plane waves ∼ exp(± ikx) and the
corresponding velocity is --hk/m. Electrons in a periodic solid also have wavefunctions
that can be labeled with a k, but they are not plane waves. So what is the quantity (if
there is one!) that replaces --hk/m and how do we obtain it from our knowledge of the
bandstructure Eb(�k)?

6.1 Quantum wells, wires, dots, and “nanotubes”

We saw in Chapter 5 that a good way to catalog the energy levels of a homogeneous
periodic solid is in terms of the wavevector �k. How do we catalog the energy levels
of a nanostructured device? As an example, consider the transistor structure discussed
in Chapter 1, modified for convenience to include two gate electrodes symmetrically

129



130 Subbands

CHANNEL 

VG VD

z 

x

I

Lz

S
O
U
R
C
E

Lx
D
R
A
I
N 

Fig. 6.1.1 Sketch of a dual-gate nanoscale field effect transistor (FET). The top gate is held at the
same potential, VG, as the bottom gate.

on either side of the channel (Fig. 6.1.1). The x-dimension (L) is getting quite short
but since electrons can flow in and out at the contacts, one needs to enforce “open
boundary conditions” which we will discuss in Chapter 8. But it is not too wrong to
treat it as a closed system assuming periodic boundary conditions, at least in the absence
of bias (VD = 0). In the z-direction we have tight confinement leading to observable
effects beyond what one might expect on the basis of periodic boundary conditions. The
y-dimension (perpendicular to the plane of the paper) is typically a few microns and
could be considered large enough to ignore surface effects, but as devices get smaller
this may not be possible. So how do we label the energy levels of a structure like
this?

In a homogeneous solid, electrons are free to move in all three directions and the
energy levels can be classified as Eb(kx , ky, kz), where the subscript b refers to different
bands. By contrast, the transistor structure shown in Fig. 6.1.1 represents a quantum
well where the electrons are free to move only in the x–y plane. We could estimate the
energy levels in this structure from our knowledge of the energy levels Eb(kx , ky, kz)
of the homogeneous solid, by modeling the z-confinement as a ring of circumference
Lz , so that the resulting periodic boundary conditions restrict the allowed values of kz

to a coarse lattice given by kz = p2π/Lz:

Eb,p(kx , ky) ≈ Eb(kx , ky, kz = p2π/Lz)

where the additional subscript p can be called a subband index. This works quite
well for ring-shaped structures like carbon nanotubes, but most low-dimensional struc-
tures involve more complicated confinement geometries and in general it takes con-
siderably more work to compute the subband energy levels of a low-dimensional
solid from the bulk bandstructure. For the transistor structure shown in Fig. 6.1.1
the insulator layers act like infinite potential walls (see Fig. 2.1.3b) and we can obtain
fairly accurate estimates by assuming that the resulting box restricts the allowed val-
ues of kz to a coarse lattice given by kz = pπ/Lz . The energy levels can then be
classified as

Eb,p(kx , ky) ≈ Eb(kx , ky, kz = pπ/Lz)
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Fig. 6.1.2 Solid curves show the full bandstructure obtained from the sp3s* model described in
Chapter 5. The dashed curve shows the dispersion obtained from a one-band effective mass model
(Eq. (6.1.1)) with parameters adjusted for best fit: Ec = 1.55 eV and mc = 0.12m (m is the free
electron mass). Actually the accepted value for the effective mass for GaAs is 0.07m, but the sp3s*
model parameters that we use are optimized to give the best fit over the entire band, and are not
necessarily very accurate near the band edge.

As we have explained, this is only approximate, but the main point I am trying to
make is that quantum wells have 1D subbands, each having a 2D dispersion relation,
E(kx , ky).

How small does the dimension Lz have to be in order for the structure to qual-
ify as a quantum well? Answer: when it leads to experimentally observable effects.
This requires that the discrete energy levels corresponding to the quantized values of
kz = pπ/Lz be less than or comparable to the thermal energy kBT , since all observ-
able effects tend to be smoothed out on this energy scale by the Fermi function. To
obtain a “back-of-an-envelope” estimate, let us assume that the dispersion relation
Eb(�k) in the energy range of interest is described by a parabolic relation with an effect-
ive mass, mc:

E(�k) ≈ Ec +
--h2

(
k2

x + k2
y + k2

z

)
2mc

Bulk solid (6.1.1)

where Ec and mc are constants that can be determined to obtain the best fit (see
Fig. 6.1.2). These parameters are referred to as the conduction band edge and the
conduction band effective mass respectively and are well-known for all common semi-
conductors.
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The z-confinement then gives rise to subbands (labeled p) such that

E p(kx , ky) ≈ Ec + p2εz +
--h2

(
k2

x + k2
y

)
2mc

Quantum well

εz =
--h2π2

2mcL2
z

= m

mc

(
10 nm

Lz

)2

× 3.8 meV (6.1.2)

A layer 10 nm thick would give rise to subband energies ∼4 meV if the effective mass
mc were equal to the free electron mass m. Materials with a smaller effective mass (like
GaAs with mc = 0.07m) lead to a larger energy separation and hence more observable
effects of size quantization.

We could take this a step further and consider structures where electrons are free
to move only in the x-direction and are confined in both y- and z-directions, as shown
below.

z

y

x

This would be the case if, for example, the width of the FET in Fig. 6.1.1 in the direction
perpendicular to the plane of the paper were made really small, say less than 100 nm.
Such quantum wires have 2D subbands, each having a 1D dispersion relation that can
be estimated by quantizing both the y- and z-components of the wavevector �k:

En,p(kx ) ≈ Ec + n2εy + p2εz +
--h2k2

x

2mc
Quantum wire

where εy is related to the y-dimension L y by a relation similar to Eq. (6.1.2). Finally,
one could consider structures that confine electrons in all three dimensions (as shown
below) leading to discrete levels like atoms that can be estimated from

Em,n,p ≈ Ec + m2--h2π2

2mcL2
x

+ n2--h2π2

2mcL2
y

+ p2--h2π2

2mcL2
z

Quantum dot

z

y

x

Such quantum dot structures are often referred to as artificial atoms.

Carbon nanotubes: Carbon nanotubes provide a very good example for illustrating
the concept of subbands (Fig. 6.1.3). We saw in Section 5.2 that the energy levels of a
sheet of graphite can be found by diagonalizing the (2 × 2) matrix

h(�k) =
[

0 h0

h∗
0 0

]
(6.1.3)
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Fig. 6.1.3 (a) Arrangement of carbon atoms on the surface of graphite. (b) Reciprocal lattice
showing Brillouin zone (shaded).

where

h0 ≡ −t
(
1 + ei�k · �a1 + ei�k · �a2

) = −t
(
1 + 2eikx a cos kyb

)
The eigenvalues are given by

E = ± |h0| = ±t
√

1 + 4 cos kyb cos kx a + 4 cos2 kyb (6.1.4)

Since each unit cell has two basis functions, the total number of states is equal to
2N, N being the number of unit cells. Each carbon atom contributes one electron to
the π-band, giving a total of 2N electrons that fill up exactly half the states. Since the
energy levels are symmetrically disposed about E = 0, this means that all states with
E < 0 are occupied while all states with E > 0 are empty, or equivalently one could
say that the Fermi energy is located at E = 0.

Where in the kx –ky plane are these regions with E = 0 located? Answer: wherever
h0(�k) = 0. It is easy to see that this occurs at the six corners of the Brillouin zone:

eikx a cos kyb = −1/2 kx a = 0, kyb = ±2π/3

kx a = π, kyb = ±π/3

These six points are special as they provide the states right around the Fermi energy
and thus determine the electronic properties. They can be put into two groups of three:

(kx a, kyb) = (0, −2π/3), (−π, +π/3), (+π, +π/3) (6.1.5a)

(kx a, kyb) = (0, +2π/3), (−π, −π/3), (+π, −π/3) (6.1.5b)

All three within a group are equivalent points since they differ by a reciprocal lat-
tice vector. Each of the six points has one-third of a valley around it within the first
Brillouin zone (shaded area in Fig. 6.1.3b). But we can translate these by appropriate
reciprocal lattice vectors to form two full valleys around two of these points, one from
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Fig. 6.1.4 Reciprocal lattice of graphite showing straight lines kc |c| = 2πν representing the
constraint imposed by the nanotube periodic boundary conditions.

each group:

(kx a, kyb) = (0, ±2π/3)

Once a sheet of graphite is rolled up into a nanotube, the allowed values of k are
constrained by the imposition of periodic boundary conditions along the circumfer-
ential direction. Note that this periodic boundary condition is a real one imposed by
the physical structure, rather than a conceptual one used to facilitate the counting of
states in a large structure whose exact boundary conditions are unimportant. Defining
a circumferential vector

�c = m�a1 + n�a2 = x̂(m + n)a + ŷ(m − n)b (6.1.6)

that joins two equivalent points on the x–y plane that connect to each other on being
rolled up, we can express the requirement of periodic boundary condition as

�k · �c ≡ kc|c| = kx a(m + n) + kyb(m − n) = 2πν (6.1.7)

which defines a series of parallel lines, each corresponding to a different integer value
for ν (Fig. 6.1.4). We can draw a one-dimensional dispersion relation along any of these
lines, giving us a set of dispersion relations Eν(k), one for each subband ν.

Whether the resulting subband dispersion relations will show an energy gap or not
depends on whether one of the lines defined by Eq. (6.1.7) passes through the center of
one of the valleys

(kx a, kyb) = (0, ±2π/3)
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y 

Fig. 6.1.5

where the energy levels lie at E = 0. It is easy to see from Eq. (6.1.7) that in order for
a line to pass through kx a = 0, kyb = 2π/3 we must have

(m − n)/3 = ν

Since ν is an integer this can only happen if (m − n) is a multiple of three: nanotubes
satisfying this condition are metallic.

Zigzag and armchair nanotubes: Consider a specific example: a nanotube with a
circumferential vector along the y-direction, �c = ŷ2bm, which is called a zigzag nano-
tube because the edge (after rolling) looks zigzag (Fig. 6.1.5). The periodic boundary
condition then requires the allowed values of k to lie parallel to the kx -axis described
by (the circumference is 2bm)

ky2bm = 2πν → ky = 2π

3b

3ν

2m
(6.1.8)

as shown in Fig. 6.1.6a.
Figure 6.1.7 shows the two “lowest” subbands corresponding to values of the subband

index ν that give rise to the smallest gaps around E=0. If m=66 (i.e. a multiple of three),
one of the subbands will pass through (kx a, kyb) = (0, ±2π/3) and the dispersion
relation for the lowest subbands look as shown in Fig. 6.1.7a, with no gap in the
energy spectrum. But if m = 65 (not a multiple of three), then no subband will pass
through (kx a, kyb) = (0, ±2π/3) giving rise to a gap in the energy spectrum as shown in
Fig. 6.1.7b.

A nanotube with a circumferential vector along the x-direction, �c = x̂2am, is called
an armchair nanotube because the edge (after rolling) looks like an armchair as shown
in Fig. 6.1.8 (this requires some imagination!). The periodic boundary condition then
requires the allowed values of k to lie parallel to the ky-axis described by (the circum-
ference is again 2bm)

kx 2am = 2πν → kx = 2πν

2ma
(6.1.9)

as shown in Fig. 6.1.6b. The subband with ν = 0 will always pass through the special
point (kx a, kyb) = (0, ±2π/3) giving rise to dispersion relations that look metallic
(Fig. 6.1.7a) regardless of the value of m.

A useful approximation: Electrical conduction is determined by the states around
the Fermi energy and so it is useful to develop an approximate relation that
describes the regions of the E–k plot around E = 0. This can be done by replacing
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(0, − 2π/3b) (0, −2π/3b)

Fig. 6.1.6 (a) A zigzag nanotube obtained by rolling a sheet of graphite along the y-axis with
�c = ŷ2bm has its allowed k-values constrained to lie along a set of lines parallel to the kx -axis as
shown. One of the lines will pass through (0, 2π/3b) only if m is a multiple of three. (b) An
armchair nanotube obtained by rolling a graphite sheet along the x-axis with �c = x̂2am has its
k-values constrained to lie along lines parallel to the ky-axis as shown. One of the lines will always
pass through (0, 2π/3b) regardless of the value of m.
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Fig. 6.1.7 Dispersion relation for the two “lowest” subbands of a zigzag nanotube
with (a) D = 5.09 nm, m = 66 showing metallic character (no gap in energy spectrum)
and (b) D = 5.02 nm, m = 65 showing semiconducting character (gap in energy
spectrum).

the expression for h0(�k) = −t(1 + 2eikx a cos kyb) with a Taylor expansion around
(kx a, kyb) = (0, ±2π/3) where the energy gap is zero (note that h0 = 0 at these
points):

h0 ≈ kx

[
∂h0

∂kx

]
kx a=0, kyb=±2π/3

+
(

ky ∓ 2π

3b

) [
∂h0

∂ky

]
kx a=0, kyb=±2π/3
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Fig. 6.1.9 Energy dispersion relation plotted as a function of kyb along the line kxa = 0. The solid
curve is obtained from Eq. (6.1.11), while the crosses are obtained from Eq. (6.1.4).

It is straightforward to evaluate the partial derivatives:

∂h0

∂kx
= [−2iat eikx a cos kyb

]
kx a=0, kyb=±2π/3 = iat = i3a0t/2

∂h0

∂ky
= [

2bt eikx a sin kyb
]

kx a=0, kyb=±2π/3 = ±bt
√

3 = ±3a0t/2

so that we can write

h0(�k) ≈ i
3a0t

2
(kx ∓ iβy)

where

βy ≡ ky ∓ (2π/3b) (6.1.10)

The corresponding energy dispersion relation (cf. Eq. (6.1.4)) can be written as

E(�k) = ±|h0| = ±3ta0

2

√
k2

x + β2
y (6.1.11)

This simplified approximate relation (obtained from a Taylor expansion of Eq. (6.1.4)
around one of the two valleys) agrees with the exact relation fairly well over a
wide range of energies, as is evident from Fig. 6.1.9. Within this approximation the
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constant-energy contours are circles isotropically disposed around the center of each
valley, (0, +2π/3b) or (0, −2π/3b).

How large is the energy gap of a semiconducting nanotube? The answer is indepen-
dent of the specific type of nanotube, as long as (m − n) is not a multiple of three so
that the gap is non-zero. But it is easiest to derive an expression for the energy gap if
we consider a zigzag nanotube. From Eqs. (6.1.8), (6.1.10), and (6.1.11) we can write

E(kx ) = ± 3ta0

2

√
k2

x +
[

2π

3b

(
3ν

2m
− 1

) ]2

(6.1.12)

so that the energy gap for subband ν can be written as the difference in the energies
between the + and − branches at kx = 0:

Eg,ν = 3ta0
2π

2mb

(
ν − 2m

3

)
This has a minimum value of zero corresponding to ν = 2m/3. But if m is not a multiple
of three then the minimum value of (ν − 2m/3) is equal to 1/3. This means that the
minimum energy gap is then given by

Eg = ta0
2π

2mb
= 2ta0

d
≈ 0.8 eV

d
(6.1.13)

where d is the diameter of the nanotube in nanometers, so that πd is equal to the
circumference 2mb.

6.2 Density of states

In the last section we discussed how size quantization effects modify the E(�k) relation-
ship leading to the formation of subbands. However, it should be noted that such effects
do not appear suddenly as the dimensions of a solid are reduced. It is not as if a bulk
solid abruptly changes into a quantum well. The effect of reduced dimensions shows
up gradually in experimental measurements and this can be appreciated by looking at
the density of states (DOS), D(E), which is reflected in conductance measurements.

The DOS tells us the number of energy eigenstates per unit energy range and it
clearly depends on the E(�k) relationship. To be specific, let us assume for the moment
that we are near one of the valleys in the conduction band where the energy levels can
be described by a parabolic relation with some effective mass mc:

E(�k) = Ec +
--h2k2

2mc
(6.2.1)

What is the corresponding DOS if the vector �k is constrained to one dimension (a
quantum wire), two dimensions (a quantum well), or three dimensions (bulk solid)?
The standard procedure for counting states is to assume a rectangular box of size
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Lx L y Lz with periodic boundary conditions (see Fig. 2.1.4) in all three dimensions (cf.
Eq. (2.1.17)):

kx = 2π

Lx
νx ky = 2π

L y
νy kz = 2π

Lz
νz (6.2.2)

where νx , νy, and νz are integers. We then assume that the box is so large that the
allowed k-values are effectively continuous and we can replace any summations over
these indices with integrals:

∑
kx

→
+∞∫

−∞

dkx

2π/Lx

∑
ky

→
+∞∫

−∞

dky

2π/L y

∑
kz

→
+∞∫

−∞

dkz

2π/Lz
(6.2.3)

In other words, the allowed states in k-space are distributed with a density of (L/2π )
per unit k in each k-dimension. Hence the total number of allowed states N (k), up to a
certain maximum value k, is given by

L

2π
2k = kL

π
1D with L ≡ Lx

Lx L y

4π2
πk2 = k2S

4π
2D with S ≡ Lx L y

Lx L y Lz

8π3

4πk3

3
= k3�

6π2
3D with � ≡ Lx L y Lz

Using the dispersion relation Eq. (6.2.1) we can convert N (k) into N (E), which tells us
the total number of states having an energy less than E. The derivative of this function
gives us the density of states (DOS):

D(E) = d

dE
N (E) (6.2.4)

The results for one, two, and three dimensions are summarized in Table 6.2.1. It can
be seen that a parabolic E(�k) relation (Eq. (6.2.1)) gives rise to a DOS that varies as
E−1/2 in 1D, E0 (i.e. constant) in 2D, and E1/2 in 3D. Note, however, that the 1D or
2D results do not give us the total DOS for a quantum wire or a quantum well. They
give us the DOS only for one subband of a quantum wire or a quantum well. We have
to sum over all subbands to obtain the full DOS. For example, if a quantum well has
subbands p given by (see Eq. (6.1.1))

E p(kx , ky) ≈ Ec + p2εz +
--h2

(
k2

x + k2
y

)
2mc

then the DOS would look like a superposition of many 2D DOS:

D(E) = mcS

2π --h2

∑
p

ϑ(E − Ec − p2εz) (6.2.5)
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Table 6.2.1 Summary of DOS calculation in 1D, 2D, and 3D for parabolic isotropic dispersion
relation (Eq. (6.2.1)). Plots assume mc = m (free electron mass) and results are for one spin
only

1D 2D 3D

N (k) = L

2π
2k = kL

π

S

4π 2
πk2 = k2 S

4π

�

8π 3

4πk3

3
= k3�

6π2

N (E) = L[2mc(E − Ec)] 1/2

π --h

S 2mc (E − Ec)

4π --h2

�[2mc(E − Ec)] 3/2

6π 2--h3

D(E) = mc L

π --h

(
1

2mc (E − Ec)

) 1/2 S mc

2π --h2

�mc

2π 2--h3 [2mc (E − Ec)]
1/2
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Fig. 6.2.1 Density of states D(E) for a 2D box calculated from Eq. (6.2.5) (2D with quantized
subbands) and compared with that obtained from the 3D relation in Eq. (6.2.6). As the width Lz of
the box is increased from 5 to 20 nm, the DOS approaches the 3D result (the conduction band
effective mass mc is assumed equal to the free electron mass m).

Figure 6.2.1 shows the density of states calculated from Eq. (6.2.5) with εz =
π2--h2/2mcL2

z as given in Eq. (6.1.2). It is apparent that as the width Lz is increased
from 5 to 20 nm, the DOS approaches the result obtained from the 3D DOS with the
volume � set equal to SLz:

D3D(E) = Smc

2π2--h3 [2mc (E − Ec)]1/2 Lz (6.2.6)
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Table 6.2.2 Summary of DOS per spin per valley

Graphite Eq. (6.2.7) Zigzag nanotube Eq. (6.2.8)

N (k) = S

4π
k2 L

π
kx

N (E) = SE2

4πa2t2

∑
ν

L

πat

√
E2 − E2

ν

D(E) = SE

2πa2t2

∑
ν

L

πat

E√
E2 − E2

ν

From graphite to a nanotube : The evolution of the DOS from a sheet of graphite
to a nanotube also provides an instructive example of how size quantization effects
arise as the dimensions are reduced. For a sheet of graphite we can approximate the
E(�k) relation for each of the two valleys centered at (kx a, kyb) = (0, ±2π/3) as (see
Eq. (6.1.11), a = 3a0/2)

E(�k) = ±3ta0

2

√
k2

x + β2
y = ±ta|�k| (6.2.7)

As we have seen, the energy subbands for a zigzag nanotube are given by (see
Eq. (6.1.12))

E(kx ) = ±ta
√

k2
ν + k2

x = ±
√

E2
ν + (takx )2 (6.2.8)

where

kν ≡ 2π

3b

(
3ν

2m
− 1

)
and Eν ≡ takν

In calculating D(E) the steps are similar to those shown in Table 6.2.1, though the
details are somewhat different because the dispersion relation is different (Eqs. (6.2.7),
(6.2.8)), as summarized in Table 6.2.2. Figure 6.2.2 compares the density of states for
a zigzag nanotube of length L and diameter d (note: circumference = πd = 2mb):

DZNT(E) = ∑
ν

2L

πat

E√
E2 − E2

ν

with Eν ≡ 2at

d

(
ν − 2m

3

)
(6.2.9)

with the density of states for a graphite sheet of area π Ld:

DG(E) = Ld

a2t2
|E | (6.2.10)

for a nanotube with m = 200 (corresponding to d = 15.4 nm) and a nanotube with
m = 800 (d = 61.7 nm).

It is apparent that the smaller nanotube has a DOS that is distinctly different from
graphite. But the larger nanotube is less distinguishable, especially if we recall that
experimental observations are typically convolved with the thermal broadening function
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Fig. 6.2.2 Density of states D(E) for a zigzag nanotube calculated from Eq. (6.2.9) (solid curves)
compared with that obtained from the result for graphite (Eq. (6.2.10), crosses).

which has a width of ∼kBT ∼0.026 eV at room temperature (to be discussed later; see
Fig. 7.3.4).

It is easy to see analytically that the DOS for zigzag nanotubes with the summation
index ν replaced by an integral (cf. Eq. (6.2.9))

DZNT(E) ≈
∫

2dν
2L

πat

|E |√
E2 − E2

ν

with dEν ≡ 2at

d
dν

=
E∫

0

dEν

2Ld

πa2t2

|E |√
E2 − E2

ν

= Ld

a2t2
|E |

becomes identical to the DOS for graphite (cf. Eq. (6.2.10)).

Anisotropic dispersion relation: We have used a few examples to illustrate the pro-
cedure for converting an E(�k) relation to a density of states D(E). This procedure (see
Tables 6.2.1 and 6.2.2) works well when the dispersion relation E(�k) is isotropic. How-
ever, the details become more complicated if the relation is anisotropic. For example,
silicon has six separate conduction band valleys, each of which is ellipsoidal:

E = Ec +
--h2k2

x

2mxx
+

--h2k2
y

2myy
+

--h2k2
z

2mzz
(6.2.11)

For a given energy E, the constant energy contour (Fig. 6.2.3) looks like an
ellipsoid whose major axes are given by

√
2mxx (E − Ec)/--h,

√
2myy(E − Ec)/--h,
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kx

ky

Constant
energy
contour

Fig. 6.2.3

and
√

2mzz(E − Ec)/--h. The volume of this ellipsoid is

4π

3

√
2mxx (E − Ec)

--h

√
2myy(E − Ec)

--h

√
2mzz(E − Ec)

--h

so that

N (E) = �

8π3

4π

3

√
2mxx (E − Ec)

--h

√
2myy(E − Ec)

--h

√
2mzz(E − Ec)

--h

and

D(E) ≡ d

dE
N (E) = �

2π2--h3

√
2mxx myymzz(E − Ec) (6.2.12)

which reduces to the earlier result (see Table 6.2.1) if the mass is isotropic.

Formal expression for DOS: In general if we have a system with eigenstates labeled
by an index α, then we can write the total number of states, NT(E) with energy less
than E as

NT(E) =
∑

α

ϑ(E − εα) (6.2.13)

where ϑ(E) denotes the unit step function which is equal to zero for E < 0, and equal
to one for E > 0. The derivative of the unit step function is a delta function, so that

D(E) ≡ d

dE
NT(E) =

∑
α

δ(E − εα) (6.2.14)

This expression represents a sequence of spikes rather than a continuous function.
Formally we can obtain a continuous DOS from Eq. (6.2.14) by letting the size of the
system get very large and replacing the summation by an integral as we have been
doing. For example, if

E(�k) = Ec +
--h2k2

2m∗
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then D(E) =
∑

�k
δ(E − ε�k)

=
∑

kx

∑
ky

∑
kz

δ

(
E − Ec −

--h2
(
k2

x + k2
y + k2

z

)
2m∗

)

where

kx = 2π

Lx
νx ky = 2π

L y
νy kz = 2π

Lz
νz

and νx , νy, and νz are integers. We then let the volume get very large and replace the
summations over these indices with integrals:

∑
kx

→
+∞∫

−∞

dkx

2π/Lx

∑
ky

→
+∞∫

−∞

dky

2π/L y

∑
kz

→
+∞∫

−∞

dkz

2π/Lz

D(E) = �

8π3

+∞∫
0

dkx dky dkz δ

(
E − Ec −

--h2k2

2m∗

)

= �

8π3

+∞∫
0

4πk2 dk δ

(
E − Ec −

--h2k2

2m∗

)

= �

2π2

+∞∫
0

m∗dE
--h2

√
2m∗(E − Ec)

--h
δ

(
E − Ec −

--h2k2

2m∗

)

= �m∗

2π2--h3

[
2m∗(E − Ec)

]1/2

as we obtained earlier (cf. 3D DOS in Table 6.2.1). This procedure is mathematically
a little more involved than the previous procedure and requires integrals over delta
functions.

The real value of the formal expression in Eq. (6.2.14) is that it is generally valid
regardless of the E(�k) relation or whether such a relation even exists. Of course, in
general it may not be easy to replace the summation by an integral, since the separation
between energy levels may not follow a simple analytical prescription like Eq. (6.2.2).
But we can still calculate a continuous DOS from Eq. (6.2.14) by broadening each
spike into a Lorentzian (see Eq. (1.3.2)):

δ(E − εα) → γ /2π

(E − εα)2 + (γ /2)2 (6.2.15)

The DOS will look continuous if the individual energies εα are spaced closely compared
to the broadening γ , which is usually true for large systems.
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Separable problems: An interesting result that can be proved using Eq. (6.2.14) is that
if the eigenvalue problem is separable, then the overall DOS is given by the convolution
of the individual densities. For example, suppose we have a 2D problem that separates
into x- and y-components (as shown in Eq. (2.3.6) for 3D problems) such that the overall
energies are given by the sum of the x-energy and the y-energy:

ε(n, m) = εx (n) + εy(m) (6.2.16)

We could define an x-DOS and a y-DOS:

Dx (E) =
∑

n

δ[E − εx (n)] (6.2.17a)

Dy(E) =
∑

m

δ[E − εy(m)] (6.2.17b)

and it is straightforward to show that the total DOS

D(E) =
∑

n

∑
m

δ[E − εx (n) − εy(m)] (6.2.17c)

can be written as a convolution product of the x-DOS and the y-DOS:

D(E) =
+∞∫

−∞
dE ′ Dx (E ′) Dy(E − E ′) (6.2.18)

6.3 Minimum resistance of a wire

Now that we have discussed the concept of subbands, we are ready to answer a very
interesting fundamental question. Consider a wire of cross-section L y Lz with a voltage
V applied across it (Fig. 6.3.1). What is the conductance of this wire if the contacts
were perfect, and we reduce its length to very small dimensions? Based on Ohm’s law,
we might be tempted to say that the conductance will increase indefinitely as the length
of the wire is reduced, since the resistance (inverse of conductance) is proportional
to the length. However, as I pointed out in Section 1.3 the maximum conductance
G = I/ V for a one-level conductor is a fundamental constant given by

G0 ≡ q2/h = 38.7 µS = (25.8 k�)−1 (6.3.1)

We are now ready to generalize this concept to a wire with a finite cross-section. It has
been established experimentally that once the length of a wire has been reduced suffi-
ciently that an electron can cross the wire without an appreciable chance of scattering
(ballistic transport) the conductance will approach a constant value given by (assuming
“perfect” contacts)

G = [M(E)] E=EF
G0 (6.3.2)
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y

z 
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Contact 1 Contact 2 

Fig. 6.3.1 A wire of cross-section LyLz with a voltage V applied across large contact.

where M(E) is the number of “modes” or subbands at an energy E. The actual number
of modes M(E) at a given energy depends on the details of the wire, but the maxi-
mum conductance per mode is G0 independent of these details. This can be shown as
follows.

Maximum current in a single-moded wire: Consider a mode or subband ν with a
dispersion relation Eν(kx ). The current carried by the states having a positive group
velocity can be written as

I = −q

L

∑
vx (kx )>0

vx (kx )

We have seen earlier that for free electrons with E = --h2k2/2m, the velocity is given
by --hk/m, which is equal to the momentum --hk divided by the mass m. But what is the
appropriate velocity for electrons in a periodic solid having some dispersion relation
Eν(�k)? The answer requires careful discussion which we will postpone for the moment
(see Section 6.4) and simply state that the correct velocity is the group velocity generally
defined as the gradient of the dispersion relation

--h�v(�k) = �∇k Eν(�k)

so that in our 1D example we can write vx (kx ) = ∂ Eν(kx )/∂kx and the current is given
by

I = −q

L

∑
v(kx )>0

1
--h

∂ Eν(kx )

∂kx

= −q
∫

dkx

2π

1
--h

∂ Eν(kx )

∂kx
= −q

h

∫
dEν (6.3.3)

showing that each mode of a wire carries a current of (q/h) per unit energy. At equilib-
rium there is no net current because states with positive and negative velocities are all
equally occupied. An applied voltage V changes the occupation of the levels over an
energy range EF ± (qV/2) creating a non-equilibrium situation whose details depend
on the nature of the coupling to the contacts. But regardless of all these details, it is
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apparent that the maximum net current will be established if the positive velocity states
are occupied up to µ1 = EF + (qV/2) while the negative velocity states are occupied
up to µ2 = EF − (qV/2), so that in the energy range

EF − (qV/2) < E < EF + (qV/2)

only the positive velocity states are occupied (Fig. 6.3.2). From Eq. (6.3.3) we can write
the current carried by these states belonging to mode ν as

I = −q

h
(µ1 − µ2) → q2

h
V

so that the maximum conductance of mode ν is equal to q2/h as stated earlier (see
Eq. (6.3.1)). Note that this result is independent of the dispersion relation Eν(kx ) for
the mode ν.

Number of modes: How many modes M(E) we actually have at a given energy, how-
ever, is very dependent on the details of the problem at hand. For example, if the
relevant energy range involves the bottom of the conduction band then we may be able
to approximate the band diagram with a parabolic relation (see Fig. 6.1.2, Eq. (6.1.1)).
The subbands can then be catalogued with two indices (n, p) as shown in Fig. 6.3.3

En,p (kx ) ≈ Ec + n2εy + p2εz +
--h2k2

x

2mc
(6.3.4)

where εy = π2--h2/2mcL2
y and εz = π2--h2/2mcL2

z , assuming that the electrons are
confined in the wire by infinite potential wells of width Ly and Lz in the y- and
z-directions respectively. The mode density M(E) then looks as shown in Fig. 6.3.2,
increasing with energy in increments of one every time a new subband becomes
available.

The details of the subbands in the valence band are much more complicated, because
of the multiple bands that are coupled together giving rise to complicated dispersion
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Fig. 6.3.3 Energy dispersion relation showing the four lowest conduction band subbands
(see Eq. (6.3.4)) in a rectangular wire with L y = Lz = 10 nm, mc = 0.25m.
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Fig. 6.3.4 Energy dispersion relation showing the four lowest valence band subbands
(see Eqs. (6.3.5) and (6.3.6)) in a rectangular wire with L y = Lz = 10 nm, mv = 0.25m.

relations. For simple back-of-an-envelope estimates we could approximate with a
simple inverted parabola

h(�k) = Ev −
--h2k2

2mv
(6.3.5)

We then get inverted dispersion relations for the different subbands

En,p (kx ) ≈ Ev − n2εy − p2εz −
--h2k2

x

2mv
(6.3.6)

with a mode density M(E) that increases with decreasing energy as shown inFig.6.3.4.

Minimum resistance of a wide conductor: We have see that there is a minimum
resistance (h/q2) that a wire can have per mode. An interesting consequence of this
is that there is a minimum resistance that a given conductor could have. For example,
we could model a field effect transistor (FET) as a two-dimensional conductor with
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a width W and a length L as shown in the figure below. As the length L is reduced,
it would approach a ballistic conductor whose resistance is dominated by the contact
resistance. This is a well-known fact and device engineers work very hard to come up
with contacting procedures that minimize the contact resistance. What is not as well-
recognized is that there is a fundamental limit to how small the contact resistance can
possibly be – even with the best conceivable contacts.

W

L
x

y

To estimate this minimum contact resistance, let us assume an n-type semiconduc-
tor where conduction takes place through the conduction band states described by a
parabolic dispersion relation of the form given in Eq. (6.3.4). Assuming that it has only
one subband along the z-direction we can write the electron density per unit area at
T = 0 K as (see Table 6.2.1)

ns = mc

π --h2 (EF − Ec) (6.3.7)

The maximum conductance is given by

Gmax = 2q2

h
Int

√
EF − Ec

--h2π2/2mcW 2
≈ W

2q2

h

√
2ns

π

where we have made use of Eq. (6.3.7) and used the symbol Int(x) to denote the largest
integer smaller than x. The minimum resistance is given by the inverse of Gmax:

RminW = h

2q2

√
π

2ns
= 16.28 k�√

ns
(6.3.8)

With a carrier density of ns = 1012/cm2, this predicts RminW ≈ 160 � µm. Note that
we have assumed only one subband arising from the z-confinement. For silicon, the
six conduction valleys give rise to six sets of subbands, of which the lowest two
are degenerate. This means that if the Lz-dimension is small enough, there will be
two degenerate subbands arising from the z-confinement and the corresponding mini-
mum contact resistance will be half our estimate which was based on one z-subband:
RminW ≈ 80 � µm.
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6.4 Velocity of a (sub)band electron

Electrons in periodic structures have energy levels that form (sub)bands and the corre-
sponding wavefunctions have the form

{ψ}n = {ψ}0 exp(± ikxn) (6.4.1)

where xn = na denotes points on a discrete lattice and {ψ}n is a column vector of size
(B × 1), B being the number of basis functions describing the unit cell (Fig. 6.4.1).

These wavefunctions thus have a unit cell component that is atomic-like in character
in addition to a free-electron or plane-wave-like ∼ exp(±ikx) character. They are often
referred to as Bloch waves. When we we first discussed the Schrödinger equation, I
mentioned that an electron in a plane wave state exp(±ikx) could be associated with
a velocity of --hk/m since the probability current was equal to this quantity times the
probability density (see Eq. (2.1.20)). What is the velocity of an electron in a Bloch
wave state?

A plausible conjecture is that the velocity must be --hk/m∗, m∗ being the effective
mass. This is indeed true under certain conditions, but a more general discussion is
called for since not all bands/subbands can be described in terms of an effective mass,
especially in low-dimensional structures like quantum wires. Besides, it is not clear that
we should be looking for a single number. In general we could have a velocity matrix
of size (B × B).

Velocity matrix: To identify this velocity matrix, we start by noting that the Hamilto-
nian for a quantum wire can be written in a block tridiagonal form

Hquantum wire =




α β 0 0 0 · · ·
β+ α β 0 0 · · ·
0 β+ α β 0 · · ·

· · · · · · · · ·


 (6.4.2)

which can be visualized as a 1D array of unit cells each of which has a very large
number of basis functions B equal to the number of atoms in a cross-section times the

xn−2 xn−1
xn+1 xn+2xn

a

Fig. 6.4.1
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Jn−(1/2) Jn+(1/2)

xn−2 xn−1
xn+1 xn+2xn  

a

Fig. 6.4.2

number of basis functions per atom. The time-dependent Schrödinger equation for the
quantum wire can be written in the form

i--h
dψn

dt
= αψn + βψn+1 + β+ψn−1 (6.4.3)

where ψ are (B × 1) column vectors, while α and β are (B × B) matrices.
To discover the appropriate expression for the current, we need to look at the time

rate of change in the total probability density in a particular unit cell, say the nth one.
This can be written as (ψ+

n ψn) which is a (1 × 1) matrix or a scalar number equal to
the sum of the squared magnitudes of all B components of ψ (note that ψnψ

+
n is not

suitable for this purpose since it is (B × B) matrix). From Eq. (6.4.3) we can write the
time derivative of (ψ+

n ψn) as

i--h
d

dt
ψ+

n ψn = ψ+
n βψn+1 + ψ+

n β+ψn−1 − ψ+
n−1βψn − ψ+

n+1β
+ψn (6.4.4)

Let us see if we can write the right-hand side as the difference between the current to
the left of the unit and the current to the right of the unit (see Fig. 6.4.2)

d

dt
ψ+

n ψn = Jn−(1/2) − Jn+(1/2)

a
(6.4.5)

motivated by the fact that in a continuum representation, the continuity equation requires
that dn/dt = −dJ/dx . It is straightforward to check that if we define the currents as

Jn+(1/2) ≡ ψ+
n+1β

+ψn − ψ+
n βψn+1

i--h
a (6.4.6)

then Eq. (6.4.5) is equivalent to (6.4.4). We can make use of Eq. (6.4.1) for a (sub)band
electron to express ψn+1 in Eq. (6.4.4) in terms of ψn to obtain

Jn+(1/2) ≡ ψ+
n

a

i--h
[β+ exp(−ika) − β exp(+ika)]ψn (6.4.7)

suggesting that we define

[v(k)] ≡ a

i--h
[β+ exp(−ika) − β exp(+ika)] (6.4.8)
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xn−1 xn+1xn
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a a a
b+ b+ b+

b b b

b+

b

Fig. 6.4.3

as the velocity matrix for an electron (sub)band state with a given k. Now that we are
finished with the mathematical argument, let us see if it makes physical sense.

Firstly we note that the energy eigenvalues are obtained by diagonalizing the matrix
(this follows from the basic result, Eq. (5.2.4), underlying the calculation of bandstruc-
ture)

[h(k)] = α + β exp(+ika) + β+ exp(−ika) (6.4.9)

It is straightforward to check that this Hamiltonian matrix is related to the velocity
matrix we just obtained (Eq. (6.4.8)) by the relation

[v(k)] = 1
--h

d

dk
[h(k)] (6.4.10)

This means that if the two matrices ([h] and [v]) were simultaneously diagonalized,
then the eigenvalues would indeed obey the relation

--h�v(�k) = �∇k Eν(�k)

that we used to derive the maximum current carried by a subband (see Eq. (6.3.3)).
Can we diagonalize [h] and [v] simultaneously? It is easy to see from the definitions

of these matrices (Eqs. (6.4.8) and (6.4.9)) that the answer is yes if the matrices [α] and
[β] can be simultaneously diagonalized. We can visualize the tridiagonal Hamiltonian
matrix in Eq. (6.4.2) as a 1D array where the matrices [α] and [β] are each of size
(B × B), B being the number of basis functions needed to represent the cross-section
of the wire (see Fig. 6.4.3). Now if we can diagonalize both [α] and [β] then in this
representation we can visualize the quantum wire in terms of independent modes or
subbands that conduct in parallel as shown in Fig. 6.4.4.

The same representation will also diagonalize the velocity matrix and its diagonal
elements will give us the velocity for each mode. One good example of a structure
where this is possible is the simple square lattice shown in Fig. 6.4.5a, which we can
represent as a 1D array of the form shown in Fig. 6.4.5b.

The matrices [β], [β+] represent the coupling between one column of atoms with
the corresponding ones on the next column and can be written as an identity matrix [I].
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This means that once we find a suitable representation to diagonalize [α], the matrix
[β] will also be diagonal, since the identity matrix is unchanged by a basis transforma-
tion. Hence, we can always diagonalize [α], [β], [h], [v] simultaneously and use this
representation to visualize a quantum wire as a collection of independent single-moded
wires in parallel.

Mode density: We saw in the last section that the mode density M(E) plays an important
role in the physics of quantum wires, comparable to the role played by the density of
states D(E) for bulk semiconductors. If a wire of length L has eigenstates catalogued
by two indices (α, k) then we could define the mode density M(E) formally as

M(E) =
∑

α

∑
k

δ(E − εα,k)
1

L

∂εα,k

∂k
(6.4.11)

This expression can be evaluated simply if the eigenvalues are separable in the two
indices: εα,k = ε′

α + ε′′
k . But this is possible only if the subbands can be decoupled as

discussed above.
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EXERCISES
E.6.1. Starting from Eq. (6.2.4) and making use of the relation --hν = ∂ E/∂k show that
for any 1D conductor D1D(E) = L/π --hν. This is a general result independent of the
dispersion relation E(k).

E.6.2. Plot the dispersion relation for the two lowest subbands of a zigzag nanotube
with m = 66 and m = 65 and compare with Fig. 6.1.7.

E.6.3. Compare the dispersion relations for a 2D graphite sheet from Eqs. (6.1.4) and
(6.1.11) as shown in Fig. 6.1.9.

E.6.4. Compare the 3D density of states with the density of states for a 2D box of
thickness (a) 5 nm and (b) 20 nm as shown in Fig. 6.2.1.

E.6.5. Compare the density of states of graphite with the density of states for a zigzag
nanotube of diameter (a) 15.4 nm and (b) 61.7 nm as shown in Fig. 6.2.2.

E.6.6. Plot the energy dispersion relation for the four lowest conduction band subbands
(see Eq. (6.3.4)) in a rectangular wire with L y = Lz = 10 nm, mc = 0.25m and compare
with Fig. 6.3.3.

E.6.7. Plot the energy dispersion relation showing the four lowest valence band sub-
bands (see Eqs. (6.3.5) and (6.3.6)) in a rectangular wire with L y = Lz = 10 nm,
mv = 0.25m and compare with Fig. 6.3.4.
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In Chapter 1 I stated that the full quantum transport model required us to generalize
each of the parameters from the one-level model into its corresponding matrix version.
Foremost among these parameters is the Hamiltonian matrix [H] representing the energy
levels and we are almost done with this aspect. This chapter could be viewed as a
transitional one where we discuss an equilibrium problem that can be handled using
[H] alone, without knowledge of other parameters like broadening that we will discuss
here.

The problem we will discuss is the following. How does the electron density inside
the device change as a function of the gate voltage VG, assuming that the source and the
drain are held at the same potential (drain voltage VD = 0, see Fig. 7.1)? Strictly speaking
this too is a non-equilibrium problem since the gate contact is not in equilibrium with
the source and drain contacts (which are in equilibrium with each other). However, the
insulator isolates the channel from the gate and lets it remain essentially in equilibrium
with the source and drain contacts, which have the same electrochemical potential µ1 =
µ2 ≡ µ. The density matrix (whose diagonal elements in a real-space representation
give us the electron density n(�r )) is given by

[ρ] = f0([H ] − µ[I ]) (7.1)

and can be evaluated simply from [H] without detailed knowledge of the coupling to
the source and drain. I am assuming that the channel is large enough that its energy
levels are nearly continuous so that the broadening due to the source and drain coupling
makes no significant difference.

The matrix [H] includes two parts (see Section 1.4)

H = H0 + U ([δ ρ]) (7.2)

where H0 represents just the isolated materials deduced from a knowledge of their
bandstructure, while U represents the potential due to the applied gate voltage and any
change in the density matrix from the reference condition described by H0. Neglecting
any corrections for correlation effects (see Section 3.2), we can calculate U from the
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Fig. 7.1 A metal–insulator–semiconductor (MIS) capacitor. The problem is to find the charge
induced in the channel in response to an applied gate voltage VG.

Poisson equation describing Coulomb interactions (εr is the relative permittivity which
could vary spatially):

�∇ · (εr �∇ U ) = −q2

ε0
[n(�r ) − n0] (7.3)

subject to the boundary conditions: [U ]source = [U ]drain = 0

[U ]gate = −qVG

In this chapter I will use this problem to illustrate how we choose the Hamiltonian
[H0] to describe an inhomogeneous structure like a transistor (Section 7.1), how we
evaluate the density matrix [ρ] (Section 7.2), and finally (Section 7.3) how the capaci-
tance C obtained from a self-consistent solution of Eqs. (7.1)–(7.3) can be viewed as a
series combination of an electrostatic capacitance CE, which depends on the dielectric
constant, and a quantum capacitance CQ, which depends on the density of eigenstates
in the channel. From this chapter onwards we will use the Hamiltonian matrix [H]
derived from a single-band effective mass equation, although the conceptual frame-
work we describe is quite general and can be used in conjunction with other models.
The supplementary Section 7.4 provides some details about another commonly used
model, namely multi-band effective mass equations, though we have not used it further
in this book.

7.1 Model Hamiltonian

Atomistic Hamiltonian: Let us start with the question of how we write [H0] to rep-
resent the inhomogeneous collection of isolated materials that comprise the device,
from a knowledge of their individual bandstructures. For example, we could model
the channel material with a [H0] that can be represented schematically as a network
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CHANNEL 
Hnn[ ]

Hnm[ ]

Fig. 7.1.1 Any part of the device (e.g. the channel) can be represented by an atomistic
Hamiltonian matrix that can be depicted schematically as a 3D network of unit cells described by
matrices [Hnn] and bonds described by matrices [Hnm], n �= m. We have arranged the unit cells in
an FCC-like network since that is the arrangement for most common semiconductors. Note that the
matrices [Hnm] for different neighbors m are in general different though we have represented them
all with the same symbol.

of unit cells [Hnn] interconnected by ‘bonds’ [Hnm] of the same size (b × b). Each
of these matrices is of size b × b, b being the number of basis functions per unit cell
(Fig. 7.1.1).

We saw in Chapter 5 that, knowing all the [Hnm], the full bandstructure can be
calculated from the eigenvalues of the (b × b) matrix

[h(�k)] =
∑

m

[Hnm]ei �k·( �dm−�dn ) (7.1.1)

(which is independent of n) for each value of �k. Conversely, we can write down the
matrices [Hnm] from a knowledge of the bandstructure and thereby write down the
matrix [H0] representing a periodic solid which is of size (Nb × Nb), N being the total
number of unit cells.

The insulator material would obviously be described by a different set of matrices that
can be deduced from its bandstructure. The difficult part to model is the interface. This
is partly due to our ignorance of the actual atomistic structure of the actual interface.
But assuming that we know the microstructure exactly, it is still not straightforward to
figure out the appropriate bond matrix [Hnm] between two unit cells n and m belonging
to different materials A and B. Clearly this information is not contained in the individual
bandstructures of either A or B and it requires a more careful treatment. We will not
get into this question but will simply represent an A–B bond using the average of the
individual [Hnm] matrices for A–A bonds and B–B bonds.

Effective mass Hamiltonian: We have seen before (see Fig. 5.1.2) that the energy
levels around the conduction band minimum can often be described by a simple relation
like

h(�k) = Ec +
--h2k2

2mc
(7.1.2)
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where Ec and mc are constants that can be determined to obtain the best fit. We could
easily write down a differential equation that will yield energy eigenvalues that match
Eq. (7.1.2). We simply have to replace �k with −i �∇ in the expression for h(�k):[
Ec −

--h2

2mc
∇2

]
f (�r ) = E f (�r ) (7.1.3)

It is easy to check that the plane wave solutions, f (�r ) = exp(i�k · �r ) with any �k are
eigenfunctions of this differential equation with eigenvalues E(�k) = Ec + (--h2k2/2mc).
We could use the finite difference method (Section 2.2) to convert Eq. (7.1.3) into
a Hamiltonian matrix that is much simpler than the original atomistic Hamiltonian.
For example, in one dimension we could write a tridiagonal matrix with Ec + 2t0 on
the diagonal and −t0 on the upper and lower diagonals (see Eq. (2.3.1)) that can be
represented in the form shown in Fig. 7.1.2.

We can use the basic bandstructure equation in Eq. (7.1.1) to write down the corre-
sponding dispersion relation:

h(kx ) = (Ec + 2t0) − t0 eikx a − t0 e−ikx a = Ec + 2t0(1 − cos kx a)

For a general 3D structure the effective mass Hamiltonian has the form shown in
Fig. 7.1.3, leading to the dispersion relation

h(�k) = Ec + 2t0(1 − cos kx a) + 2t0(1 − cos kya) + 2t0(1 − cos kza) (7.1.4a)

Fig. 7.1.2 The effective mass Hamiltonian matrix in 1D can be visualized as a 1D array of unit
cells each with energy Ec + 2t0 bonded to its nearest neighbors by −t0.

Fig. 7.1.3 The effective mass Hamiltonian matrix can be depicted schematically as a 3D network
of unit cells (unrelated to the actual crystal structure) each with energy Ec + 6t0 bonded to its
nearest neighbors by −t0.
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which reduces to the parabolic relation in Eq. (7.1.2) if kx a is small enough
that (1 − cos kx a) can be approximated with (kx a)2/2 (and the same with kya
and kza):

h(�k) = Ec +
--h2

2mc

(
k2

x + k2
y + k2

z

)
(7.1.4b)

This Hamiltonian only describes the eigenstates around the bottom of the conduc-
tion band where Eq. (7.1.2) provides an adequate approximation, unlike an atomistic
Hamiltonian that describes the full bandstructure (see Eq. (7.1.1)). What we gain, how-
ever, is simplicity. The resulting Hamiltonian matrix [H0] is much smaller than the
atomistic counterpart for two reasons. Firstly, the matrices [Hnm] representing a unit
cell or a bond are scalar numbers rather than (b × b) matrices. Secondly the unit cells
in Fig. 7.1.3 do not have to correspond to atomic unit cells as in atomistic Hamiltonians
(see Fig. 7.1.1). The lattice can be simple cubic rather than face-centered cubic and the
lattice constant a can be fairly large depending on the energy range over which we want
the results to be accurate. A simple rule of thumb is that a should be small enough that
the corresponding t0 is larger than the energy range (above Ec) we are interested in.
Since t0 ≡ --h2/2mca2, this means that for a given energy range, we can use a larger a if
the effective mass mc is small. But it is important to remember that the wavefunction
does not provide information on an atomic scale. It only provides information on a
coarse spatial scale and is sometimes referred to as an “envelope function.”

Spatially varying effective mass: Effective mass equations are often used to model
“heterostructures” consisting of different materials such that the conduction band edge
Ec and/or the effective mass mc appearing in Eq. (7.1.3):[
Ec −

--h2

2mc
∇2

]
f (�r ) = E f (�r )

vary spatially. The variation of Ec leads to no special problems, but the variation of mc

cannot be incorporated simply by writing[
Ec(�r ) −

--h2

2mc(�r )
∇2

]
f (�r ) = E f (�r )

The correct version is[
Ec(�r ) −

--h2

2mc

�∇ ·
(

1

mc(�r )
�∇
)]

f (�r ) = E f (�r ) (7.1.5)

and it can be shown that if we apply the finite difference method to this version at an
interface where the effective mass changes from m1 to m2 then we obtain a Hamiltonian
matrix that can be represented as shown in Fig. 7.1.4.
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Fig. 7.1.4

The point to note is that the resulting Hamiltonian matrix
Ec + 2t1 −t1 0

−t1 Ec + t1 + t2 −t2
0 −t2 Ec + 2t2




is hermitian as needed to ensure that the energy eigenvalues are real and current is
conserved. By contrast if we start from one of the other possibilities like

[
Ec −

--h2

2mc(�r )
∇2

]
f (�r ) = E f (�r )

and use the finite difference method we will end up with a Hamiltonian matrix of the
form (t0 ≡ (t1 + t2)/2)
Ec + 2t1 −t1 0

−t1 Ec + 2t0 −t0
0 −t2 Ec + 2t2




which is clearly non-hermitian.
As we have mentioned before, writing down the appropriate Hamiltonian for the

interface region requires knowledge of the interfacial microstructure and simple approx-
imations are often used. But the important point to note is that whatever approxima-
tion we use, a fundamental zero-order requirement is that the Hamiltonian matrix
should be hermitian. Otherwise we can run into serious inconsistencies due to the
non-conservation of probability density and the resulting lack of continuity in electron
flow.

An example: One-band effective mass models are widely used to model heterostruc-
tures of materials that are not too different. Consider, for example, a GaAs quantum
well sandwiched between Al0.3Ga0.7As barriers. For GaAs we use Ec = 0 eV, mc =
0.07m, while for AlAs, Ec = 1.25 eV, mc = 0.15m and interpolate linearly to obtain
Ec and mc for the AlAs–GaAs alloy. Figure 7.1.5 shows the energies of the two lowest
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Fig. 7.1.5 Energy of the two lowest energy levels of a GaAs quantum well sandwiched between
Al0.3Ga0.7As barriers (shown in inset) as a function of the well width W calculated from a one-band
effective mass model.
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Fig. 7.1.6 Solid curves show the dispersion relation E(�k) as a function of the magnitude of the
in-plane wavevector �k = {kx ky} for the two lowest subbands of a quantum well of width
W = 6.9 nm, calculated from the one-band effective mass model. The ×’s and °’s show the
dispersion expected for an effective mass equal to that in the well and in the barrier respectively.

levels in the GaAs quantum well as a function of the well width, while Fig. 7.1.6
shows the dispersion relation E(�k) as a function of the magnitude of the in-plane
wavevector �k = {kx ky} for the two lowest subbands of a quantum well of width
W = 6.9 nm.

Problems like this are essentially one-dimensional and easy to solve numerically.
The basic idea is that our usual prescription for obtaining the effective mass equation
is to replace �k with −i �∇ which consists of three simultaneous replacements:

kx → −i∂/∂x ky → −i∂/∂y kz → −i∂/∂z
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To obtain a 1D effective mass equation while retaining the periodic boundary condition
in the x–y plane, we replace kz with −i∂/∂z in h(�k), while leaving kx , ky intact:

[h(kx , ky ; kz ⇒ −i∂/∂z) + U (z)]φ(z) = Eφ(z) (7.1.6)

For example, if we start from the one-band effective mass relation (Eq. (7.1.2)),

h(�k) = Ec +
--h2k2

2mc

we obtain[
Ec −

--h2

2

∂

∂z

(
1

mc(z)

∂

∂z

)
+ U (z) +

--h2

2mc(z)

(
k2

x + k2
y

)]
φα(z) = εαφα(z) (7.1.7)

which is a 1D equation that can be numerically solved for any given value of kx , ky .
The one-band effective mass model works very well when we have an isotropic

parabolic band that is well separated from the other bands. This is usually true of
the conduction band in wide-bandgap semiconductors. But the valence band involves
multiple closely spaced bands (which are strongly anisotropic and non-parabolic) and
a multi-band effective mass model is needed for a proper treatment of the valence band
(p-type devices) or even the conduction band in narrow-gap semiconductors. General
device models based on multi-band models (see supplementary notes in Section 7.4) and
atomistic models are topics of current research and I will not discuss them in any depth
in this book. I will largely use the one-band model to illustrate the essential concepts
underlying the treatment of equilibrium and non-equilibrium problems. However, I
will try to describe the approach in a general form that readers can adapt to more
sophisticated Hamiltonians in the future as the need arises.

7.2 Electron density/density matrix

Once we have identified the basic Hamiltonian matrix H0 representing the isolated
materials comprising a device, the next step is to evaluate the density matrix (especially
the diagonal elements in a real-space representation, which give us the electron density)

n(�r ) = 2ρ(�r , �r ) = 2
∑

α

|φα(�r )|2 f0(εα − µ) (7.2.1)

where φα(�r ) are the eigenfunctions of [H] with eigenvalues εα , with [H] given by

H = H0 + U ([δ ρ]) (7.2.2)

where U represents the potential due to the applied gate voltage and due to any change in
the density matrix from the reference condition described by H0. In general the matrix
representation [U] of the function U (�r ) requires a knowledge of the basis functions, but
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 Schrödinger 

[H0 + U]fa = ea fa  
 

|fa (r )|2f0 (ea −m)n(r)  = 2 Σ

∇ .(er∇U) = −
q2

e0
(n(r )−n0) Poisson 

a

Fig. 7.2.1 Modeling a device in equilibrium generally requires a self-consistent solution of a
“Schrödinger” equation with the Poisson equation.

if the potential varies slowly from one unit cell to the next, then we can simply assume
the potential to have a constant value U (�r = �dn) throughout a unit cell n so that

[Unn] = U (�r = �dn)[I ] and [Unm] = [0] for m �= n (7.2.3)

where [I] and [0] are the identity matrix and the null matrix of appropriate size.
How do we calculate U (�r )? Neglecting any corrections for correlation effects (see

Section 3.2), we can use the Poisson equation describing Coulomb interactions (εr is
the relative permittivity, which could vary spatially):

�∇ · (εr �∇ U ) = −q2

ε0
(n(�r ) − n0) (7.2.4)

subject to the boundary conditions: [U ]source = [U ]drain = 0

[U ]gate = −qVG

What we need is a “Schrödinger–Poisson solver” that solves the two aspects of the
problem self-consistently as shown schematically in Fig. 7.2.1. In general, 3D solutions
are needed but this is numerically difficult and we will use an essentially 1D example
to illustrate the “physics.”

1D Schrödinger–Poisson solver: There are many problems that can be modeled with
a 1D Schrödinger–Poisson solver: the metal–insulator–semiconductor (MIS) capacitor
(Fig. 7.2.2) we mentioned at the beginning of this chapter represents such an exam-
ple if we neglect any boundary effects in the x–y plane. What does the 1D version
of the equations in Fig. 7.2.1 look like? Let us assume we are using the one-band
effective mass Hamiltonian. We might guess that we should first solve a 1D version
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Fig. 7.2.2 The MIS capacitor can be modeled with a 1D Schrödinger equation if we neglect any
boundary effects in the x–y plane.

of Eq. (7.1.7)[
Ec −

--h2

2mc

∂2

∂z2
+ U (z)

]
φm(z) = εmφm(z) (7.2.5)

then evaluate the electron density from the 1D version of Eq. (7.2.1)

n(z) = 2
∑

m

|φm(z)|2 f0(εm − µ) (WRONG!) (7.2.6)

and do all this self-consistently with a 1D version of Eq. (7.2.4) with the reference
electron density n0 set equal to zero.

− d

dz

(
εr

dU

dz

)
= q2

ε0
n(z) (7.2.7)

All the 1D versions listed above are correct except for Eq. (7.2.6). The Fermi function f0

appearing in this equation should be replaced by a new function f2D defined as

f2D(E) = N0 ln[1 + exp(−E/kBT )] with N0 ≡ mckBT

2π --h2 (7.2.8)

(cf. f0(E) = 1/[1 + exp(E/kBT )]). The correct 1D version of the Schrödinger–Poisson
solver is shown in Fig. 7.2.3.

Where does this new function f2D come from? As long as the structure can be
assumed to be uniformly periodic in the x–y plane and we can neglect all boundary
effects, the eigenfunctions can still be written in the form of plane waves in the x- and
y-directions, normalized to lengths Lx and L y , respectively:

φα(�r ) = exp[ikx x]√
Lx

exp[iky y]√
L y

φm(z) (7.2.9)
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− d
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Fig. 7.2.3 The 1D Schrödinger–Poisson solver.

and the electron density is obtained from Eq. (7.2.1) after summing over all three indices
{m, kx , ky} ≡ α:

n(z) = 2
∑

m

∑
kx ,ky

|φm(z)|2 f0(εα − µ) (7.2.10)

Equation (7.2.6) is wrong because it simply ignores the summations over kx , ky . The
correct version is obtained by noting that

εα = εm +
--h2

2mc

(
k2

x + k2
y

)
(7.2.11)

which follows from Eq. (7.1.7) with a constant (z-independent) effective mass. Note
that things could get more complicated if the mass itself varies with z since the extra
term

--h2

2mc(z)

(
k2

x + k2
y

)
would no longer be a constant that can just be added on to obtain the total energy. Under
some conditions, this may still be effectively true since the wavefunction is largely
confined to a region with a constant effective mass (see, for example, Exercise 7.1c),
but it is not generally true. Also, the simple parabolic relation in Eq. (7.2.11) usually
does not hold for the multi-band effective mass equation (see Fig. 7.4.2).

Using Eq. (7.2.11), the summation over kx , ky can now be performed analytically to
show that

∑
kx , ky

f0(εα − µ) =
∑
kx , ky

f0

(
εm − µ +

--h2

2mc

(
k2

x + k2
y

))
= f2D(εm − µ) (7.2.12)
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Ec2 + 2t2 

Insulator, Ec1
Insulator, Ec1Channel, Ec2

t1 ≡ h2 /2mc1a2

a

t2 ≡ h2 /2mc2a2 t1 ≡ h2 /2mc1a2

− t1 − t1 − t2 − t2 − t1

Ec1 + 2t1 

+ t1 + t2 

(Ec1 + Ec2) / 2 

Fig. 7.2.4 One-dimensional one-band effective mass Hamiltonian used to model a channel
sandwiched between two insulators.

This is shown as follows:

1

S

∑
kx , ky

f0

(
E +

--h2

2mc

(
k2

x + k2
y

))

=
∞∫

0

2πk dk

4π2

1

1 + A exp(--h2k2/2mckBT )
where A ≡ exp(E/kBT )

= mckBT

2π --h2

∞∫
0

dy

1 + A ey

= mckBT

2π --h2 {ln[A + e−y]}0
∞

= mckBT

2π --h2 ln[1 + exp(−E/kBT )] ≡ f2D(E)

Equation (7.2.12) allows us to simplify Eq. (7.2.10) to obtain the equation listed in
Fig. 7.2.3:

n(z) = 2
∑

m

|φm(z)|2 f2D(εm − µ) (7.2.13)

A numerical example: We can model the MOS capacitor shown in Fig. 7.2.2 by setting
up a 1D Schrödinger–Poisson solver assuming the cross-section to be uniform in the x–y
plane with periodic boundary conditions. We set up a lattice along the z-direction with
a 1D Hamiltonian Hz that looks like Fig. 7.2.4, where we have assumed that both the
conduction band edge Ec and the effective mass mc could be different for the insulator
and the channel. However, we will use Eq. (7.2.13) with N0 (see Eq. (7.2.8)) given
by the channel effective mass, since the wavefunctions are strongly excluded from the
insulator region.
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Once we have set up this Hamiltonian Hz it is straightforward to evaluate the electron
density n(z) which can be viewed as the diagonal elements of the 1D density matrix
given by

ρ(z, z′) =
∑

m

φm(z) f2D(εm − µ)φ∗
m(z′) (7.2.14a)

As we have discussed before (see discussion following Eq. (4.3.8)) we could view
Eq. (7.2.14a) as the real-space representation of a more general matrix relation

ρ = f2D(Hz − µI ) (7.2.14b)

As before, the function of a matrix [Hz] is evaluated by firstly diagonalizing [Hz],
secondly calculating the density matrix in the eigenrepresentation, and thirdly trans-
forming it back to the real-space lattice. This can be achieved in Matlab using the set
of commands
(1) [V, D] = eig(Hz); D = diag (D)
(2) rho = log(1 + (exp((mu-D)./kT)))
(3) rho = V∗ diag(rho)∗ V′; N = diag(rho)
The electron density n(z) is obtained from N by multiplying by 2N0 (see Eq. (7.2.8),
with an extra factor of two for spin) and dividing by the size of a unit cell a:
n(z) = N × 2N0/a.

We can use the same lattice to solve the Poisson equation

− d

dz

(
εr

dU

dz

)
= q2

ε0
n(z)

which looks just like the Schrödinger equation and can be solved by the method of
finite differences in exactly the same way:

[D2]{U } = q2

ε0 a
(2N0a2){N } + {Ubdy} (7.2.15)

where [D2] is the matrix operator representing the second derivative. For a constant εr,

[D2] ≡ εr




2 −1 0 0 0 · · ·
−1 2 −1 0 0 · · ·
0 −1 2 −1 0 · · ·

· · · · · · · · · · · · · · · · · ·


 (7.2.16)

Spatial variations in εr can be handled in the same way that we handled spatially varying
effective masses. The boundary term comes from the non-zero values of U at the two
boundaries:

{Ubdy}T = εr{−qVG 0 · · · · · · 0 − qVG} (7.2.17)
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Knowing N, we can calculate the potential U from Eq. (7.2.15):

{U } = q2

ε0 a
(2N0a2)[D2]−1{N } + [D2]−1{Ubdy} (7.2.18)

Figures 7.2.5a, b show the equilibrium band diagram and electron density for a
3 nm wide channel and a 9 nm wide channel respectively. We have assumed that the
conduction band edge Ec is zero in the channel and at 3 eV in the insulator. We use a
relative dielectric constant εr = 4 and an effective mass mc = 0.25m everywhere. Also,
we have assumed that the electrochemical potential µ is equal to Ec. In real structures
the proper location of µ is set by the work function of the metal. The thickness of the
oxide is assumed to be 2.1 nm and the calculation was done using a discrete lattice with
a = 0.3 nm. The gate voltage VG is assumed to be 0.25 V.

For the 3 nm channel, the charge density is peaked near the middle of the channel
as we might expect for the wavefunction corresponding to the lowest energy level of a
“particle in a box” problem. By contrast, the semi-classical charge density piles up near
the edges of the channel as we might expect from purely electrostatic considerations.
This is an example of what is referred to as size quantization. It disappears as we make
the channel wider, since the “particle in a box” levels get closer together and many of
them are occupied at low temperatures. Consequently the electron distribution looks
more classical for the 9 nm channel. Also shown (in dashed lines) is the electron density
if the gate voltage is applied asymmetrically, i.e. 0 V on one gate and 0.25 V on the other
gate. Note that for the 9 nm channel there is a significant skewing of the distribution
when the bias is applied asymmetrically, as we would expect intuitively. But for the
3 nm channel the electron distribution is only slightly changed from the symmetric to
the asymmetric bias. The wavefunction remains relatively unaffected by the applied
bias, because the eigenstates are further separated in energy.

Semi-classical method: Figure 7.2.5 also shows a comparison of the electron density
with that obtained from a semi-classical approach which works like this. In a homo-
geneous structure the eigenfunctions are given by

φα(�r ) = exp[ikx x]√
Lx

exp[iky y]√
L y

exp[ikzz]√
Lz

(7.2.19)

so that the electron density obtained from Eq. (7.2.1) after summing over all three
indices {kx , ky, kz} ≡ α is uniform in space (� = Lx L y Lz):

n = 2 (for spin) × 1

�

∑
kx , ky , kz

f0(εα − µ)

with

εα = Ec +
--h2

2mc

(
k2

x + k2
y + k2

z

)
(7.2.20)



169 7.2 Electron density/density matrix

(a) (b)

0 2 4 6 8
−0.5

0

0.5

1

1.5

2

2.5

3

 z ( nm ) 

 E
ne

rg
y 

(e
V

)  

µ
0 5 10 15

−0.5

0

0.5

1

1.5

2

2.5

3

 z ( nm )  

E
ne

rg
y 

(e
V

)

µ

0 5 10 15
0

5

10

15 x 10
18

 z ( nm )  

 n
 (

 / 
cm

3  
)

 

0 2 4 6 80

5

10

15 x 1018 

 z ( nm )  

 n
( 

/ c
m

3 
) 

Semi-classical

Quantum 

Asymmetric  
gate voltage

(quantum) 

Fig. 7.2.5 An MOS capacitor (see Fig. 7.2.2) with a channel thickness of (a) 3 nm and (b) 9 nm.
We assume µ = 0, Ec = 0 in the silicon and Ec = 3 eV in the oxide. The top figures show the
equilibrium band diagram: the solid curves include both the conduction band profile (dashed) and
the self-consistent potential. The lower figures show the electron density. The thickness of the
oxide is assumed to be 2.1 nm and the calculation was done using a discrete lattice with a = 0.3 nm.
The gate voltage VG is assumed to be 0.25 V. The dashed lines show the electron density when the
voltage is applied asymmetrically: 0.25 V on one gate, 0 V on the other.

This summation can be performed following the same procedure as described in
connection with the 2D version in Eq. (7.2.12):

1

�

∑
kx , ky , kz

f0

(
Ec − µ +

--h2

2mc

(
k2

x + k2
y + k2

z

))

=
∞∫

0

4πk2 dk

8π3

1

1 + A exp(--h2k2/2mckBT )
where A ≡ exp[(Ec − µ)/kBT ]

=
(

mckBT

2π --h2

)3/2 2√
π

∞∫
0

dy
√

y

1 + A ey
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so that we can write

n = 2f3D(Ec − µ) (7.2.21)

where

f3D(E) ≡
(

mckBT

2π --h2

)3/2

�1/2

(
− E

kBT

)

and �1/2(x) ≡ 2√
π

∞∫
0

dξ
√

ξ

1 + exp(ξ − x)

(7.2.22)

This expression for the (uniform) electron density n is only correct for a homogeneous
medium with no external potential. The semi-classical method consists of calculating
the spatially varying electron density n(z) in the presence of a potential U (z) from a
simple extension of Eq. (7.2.21):

n = 2 f3D(Ec + U (z) − µ) (7.2.23)

as if each point z behaves like a homogeneous medium with a conduction band edge
located at Ec + U (z). Replacing the upper block in Fig. 7.2.3 (labeled “Schrödinger”)
with this equation we obtain the semi-classical Schrödinger–Poisson solver widely used
in device simulation programs.

7.3 Quantum vs. electrostatic capacitance

The electron density in the channel per unit area nS is obtained by integrating
n(z) in Eq. (7.2.13) and noting that the wavefunctions are normalized, that is∫

dz|φm(z)|2 = 1:

nS =
∫

dz n(z) = 2
∑

m

f2D(εm − µ) (7.3.1)

Figure 7.3.1 shows the electron density nS as a function of the gate voltage VG applied
symmetrically to both gates.

The basic physics is illustrated in Fig. 7.3.2. A positive gate voltage lowers the
overall density of states (DOS) and increases the electron density nS . As long as the
electrochemical potential µ is located below the lowest energy level, the device is in
the OFF state. Once µ moves into the energy range with a non-zero DOS the device
is in the ON state. Figure 7.3.1 shows that it takes a higher threshold voltage to turn
on the device with the 3 nm channel relative to the one with the 9 nm channel. This is
because of the increase in the lowest energy level due to size quantization.
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Fig. 7.3.1 Electron density per unit area, nS in a 3 nm (solid curve) and a 9 nm (dashed curve)
channel as a function of the gate voltage VG applied symmetrically to both gates calculated
numerically using the model described in Section 7.2.
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Fig. 7.3.2 A positive voltage VG applied to the gate moves the density of states D(E) downwards.
Since the electrochemical potential µ remains fixed, this increases the number of occupied states
and hence the number of electrons N.

Equivalent circuit: An interesting question to ask is the following: how does the
potential VC in the channel change as the gate voltage VG is changed? It is easy to

answer this question in two extreme situations. If the channel is in the OFF state,
then it behaves basically like an insulator, and the channel potential VC is equal to
VG. But if the channel is in the ON state then it behaves like the negative plate of a
parallel plate capacitor, so that the channel potential VC is equal to the source (or drain)
potential which we have assumed to be the ground. What is not obvious is the answer
in intermediate situations when the channel is neither an insulator nor a conductor. The
approximate equivalent circuit shown in Fig. 7.3.3 can be used to answer this question.
Let me explain where it comes from.
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Fig. 7.3.3 Approximate equivalent circuit representation of the MOS capacitor.

The channel is connected to the two gate electrodes by the familiar parallel plate
capacitors; the capacitance (per unit area) is proportional to the effective dielectric
constant ε and inversely proportional to the distance d between the center of the channel
and the gate electrode:

Cins ≡ ε/d (7.3.2)

Of course this is just an approximate expression since the electrons in the channel are
not all located at the center as we have idealized. Also, one could raise questions about
the exact dielectric constant ε to use, since it should represent an appropriate average
over the channel and the insulator. One could take such “details” into account and try
to come up with a more accurate expression, but that would obscure the purpose of
this discussion which is to gain “insight.” To get the quantitative details right, we can
always use the numerical model described at the end of the last section. The point is
that the capacitors labeled Cins are essentially the same capacitors that we learnt about
in freshman physics.

But where does the quantum capacitance CQ come from? We saw in the last section
that we have to perform a simultaneous solution of two relations connecting the electron
density to the potential (see Fig. 7.2.3): an electrostatic relation (Poisson) and a quantum
relation (Schrödinger). The electrostatic relation can be written as

U = UL + [q2(N − N0)/CE] (7.3.3)

where UL is the channel potential obtained from a solution to the Laplace equation
assuming zero charge, while (N − N0) tells us the extra electron density relative to the
number N0 required to keep it neutral. The quantum relation can be written as

N =
+∞∫

−∞
dE D(E − U ) f0(E − µ) (7.3.4)

where D(E − U) is the density of states (per unit area) shifted by the potential U.
This is a non-linear relation and we could get some insight by linearizing it around
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an appropriate point. For example, we could define a “neutral potential” U = UN, for
which N = N0 and keeps the channel exactly neutral:

N0 =
+∞∫

−∞
dE D(E − UN) f0(E − µ)

Any increase in U will raise the energy levels and reduce N, while a decrease in U will
lower the levels and increase N. So, for small deviations from the neutral condition, we
could write

N − N0 ≈ CQ[UN − U ]/q2 (7.3.5)

where

CQ ≡ −q2[dN/dU ]U=UN (7.3.6)

is called the quantum capacitance and depends on the density of states. We can substitute
this linearized relation into Eq. (7.3.3) to obtain

U = UL + CQ

CE
(UN − U )

→ U = CEUL + CQUN

CE + CQ
(7.3.7)

Equation (7.3.7) is easily visualized in terms of the capacitive network shown in
Fig. 7.3.3. The actual channel potential U is intermediate between the Laplace potential
UL and the neutral potential UN. How close it is to one or the other depends on the rel-
ative magnitudes of the electrostatic capacitance CE and the quantum capacitance CQ.

From Eqs. (7.3.4) and (7.3.6) it is straightforward to show that the quantum capaci-
tance CQ is proportional to the DOS averaged over a few kBT around µ:

CQ ≡ q2 D0 (7.3.8)

D0 ≡
+∞∫

−∞
dE D(E − UN)FT(E − µ) (7.3.9)

where FT(E) is the thermal broadening function defined as

FT(E) ≡ −d f0

dE
= 1

4kBT
sec h2

(
E

2kBT

)
(7.3.10)

Figure 7.3.4 shows a sketch of the thermal broadening function; its maximum value
is (1/4kBT ) while its width is proportional to kBT ; it is straightforward to show that
the area obtained by integrating this function is equal to one, independent of kBT :+∞∫

−∞
dE FT(E) = 1. This means that at low temperatures FT(E) becomes very large but
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Fig. 7.3.4 Plot of the thermal broadening function FT(E) (Eq. (7.3.10)) with kBT = 0.025 eV.

very narrow while maintaining a constant area of one. Such a function can be idealized
as a delta function: FT(E) → δ(E), which allows us to simplify the expression for the
quantum capacitance at low temperatures

CQ ≈ q2 D(E = µ + UN) (7.3.11)

showing that it is proportional to the density of states around the electrochemical
potential µ after shifting by the neutral potential UN.

It is easy to see from the equivalent circuit in Fig. 7.3.3 that

VC = VG
CE

CE + CQ
where CE = 2Cins (7.3.12)

Devices in the OFF state have zero CQ, so that VC = VG. But in the ON state, CQ is
non-zero and VC is thus smaller than VG. The measured capacitance C is the series
combination of the electrostatic and quantum capacitances

C = CECQ

CE + CQ
(7.3.13)

and is dominated by the smaller of the two.
We can get an approximate feeling for the magnitude of the quantum capacitance

CQ in the ON state by noting that a 2D conductor described by a parabolic dispersion
relation has a constant DOS (Table 6.2.1): D(E) = Smc/π --h2, so that we can write the
quantum capacitance approximately as

CQ = q2mcS

π --h2 = εS

a∗
0/4

(7.3.14)

where a∗
0 is given by an expression similar to that for the Bohr radius that we defined in

Chapter 2 (see Eq. (2.1.5)). But it is larger than the Bohr radius (= 0.053 nm) because
the conduction band effective mass (mc) is smaller than the free electron mass (m) and
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the dielectric constant (ε) is larger than that for free space (ε0):

a∗
0 ≡ 4 πε--h2

mcq2
= (0.053 nm)

m

mc

ε

ε0
(7.3.15)

The quantum capacitance is thus equal to that of a parallel plate capacitor whose
plates are separated by a∗

0/4. Since this is usually a very small number, the quantum
capacitance in the ON state is typically well in excess of the electrostatic capaci-
tance CE and the measured capacitance is dominated by the latter (see Eq. (7.3.13)).
But in materials with a small effective mass, the quantum capacitance can be small
enough to have a significant effect, especially if the insulator is very thin making
CE large.

OFF regime: In the OFF regime, the density of states close to E = µ is negligible, and
so is the quantum capacitance CQ. Consequently the channel potential VC is essentially
equal to the gate voltage VG, so that we can write

N =
+∞∫

−∞
dE f0(E − µ − qVG)D(E)

≈
+∞∫

−∞
dE exp

(
− E − µ − qVG

kBT

)
D(E)

since E − µ − qVG � kBT in the energy range where D(E) is non-zero. In this regime,
the number of electrons changes exponentially with gate voltage:

N ∼ N0 exp

(
qVG

kBT

)
so that

log10

(
N

N0

)
≈

(
qVG

2.3 kBT

)
(7.3.16)

This is basically the well-known result that in the OFF regime, the number of elec-
trons increases by a decade (i.e. a factor of ten) for every 2.3kBT (∼ 60 meV at room
temperature) increase in the gate voltage. This relation can be verified by replotting
Fig. 7.3.1 on a logarithmic scale and looking at the slope in the OFF regime.

ON regime: In the ON regime, the electrochemical potential µ lies well inside the
band of states where D(E) (and hence the quantum capacitance CQ) is significant. The
actual capacitance is a series combination of the quantum and electrostatic capacitances
as explained above. From the slope of the nS vs. VG curve in the ON region (see
Fig. 7.3.1), we deduce a capacitance of approximately 1.8 × 10−6 F/cm2 for the 3 nm
channel. If we equate this to 2ε/d, we obtain d = 3.9 nm, which compares well with
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the number obtained by adding half the channel width (1.5 nm) to the oxide thickness
(2.1 nm), showing that the effective capacitance is largely electrostatic (rather than
quantum) in origin.

7.4 Supplementary notes: multi-band effective mass Hamiltonian

The one-band effective mass model works very well when we have an isotropic parabolic
band that is well separated from the other bands. This is usually true of the conduc-
tion band in wide-bandgap semiconductors. But the valence band involves multiple
closely spaced bands that are strongly anisotropic and non-parabolic. Close to the �

point the energy dispersion can usually be expressed in the form (A, B, and C are
constants)

E(�k) = Ev − Ak2 ±
√

B2k4 + C2
(
k2

x k2
y + k2

yk2
z + k2

z k2
x

)
(7.4.1)

This dispersion relation can be described by a 4 × 4 matrix of the form (I is a 4 × 4
identity matrix)

[h(�k)] = −P I − T (7.4.2)

where

[T ] ≡




Q 0 −S R
0 Q R+ S+

−S+ R −Q 0
R+ S 0 −Q




P ≡ Ev +
--h2 γ1

2m

(
k2

x + k2
y + k2

z

)
Q ≡

--h2 γ2

2m

(
k2

x + k2
y − 2k2

z

)
R ≡

--h2

2m

[
−

√
3 γ2

(
k2

x − k2
y

) + i 2
√

3 γ3 kx ky

]

S ≡
--h2 γ3

2m
2
√

3( kx − i ky)kz

The Luttinger parameters γ1 , γ2 , and γ3 are available in the literature for all com-

mon semiconductors (see, for example, Lawaetz (1971)). One can argue that Eqs.
(7.4.1) and (7.4.2) are equivalent since it can be shown using straightforward algebra
that

[T ] 2 = (Q2 + R2 + S2)I = [
B2k4 + C2

(
k2

x k2
y + k2

yk2
z + k2

z k2
x

)]
I
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Fig. 7.4.1 Solid curves show the full bandstructure obtained from the sp3s∗ model described in
Chapter 5. Dashed curves show the dispersion obtained from a two-band effective mass model
(Eq. (7.4.2)) with parameters adjusted for best fit.

It can be seen from Fig. 7.4.1 that the eigenvalues of [h(�k)] describe well the two
highest valence bands (light hole and heavy hole) very close to the � point. To get
better agreement over a wider range of k-values and to include the split-off band (see
Fig. 7.4.2), one often uses a three-band [h(�k)] of the form

[h(�k)] = −




P + Q 0 −S R −S/
√

2
√

2 R

0 P + Q R+ S+ −√
2R+ −S+/

√
2

R+ 0 P − Q 0 −√
2Q

√
3/2 S

0 R+ 0 P − Q
√

3/2S+ √
2Q+

−S+/
√

2 −√
2R −√

2Q+ √
3/2S P + � 0√

2R+ −S/
√

2
√

3/2S+ √
2Q 0 P + �




(7.4.3)

We can use either the two-band [h(�k)] in Eq. (7.4.2) or the three-band [h(�k)] in
Eq. (7.4.3) to construct an effective mass equation for the valence band using the same
principle that we used for the conduction band (cf. Eqs. (7.1.2), (7.1.3)). We simply
replace �k with −i �∇ in the expression for h(�k) to obtain a coupled differential equation
of the form

[h(�k → − i �∇)]{ f (�r )} = E{ f (�r )} (7.4.4)
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Fig. 7.4.2 Solid curves show the full bandstructure obtained from the sp3s∗ model described in
Chapter 5. Dashed lines show the dispersion obtained from a three-band effective mass model
(Eq. (7.4.3)) with parameters adjusted for best fit.

where the “wavefunction” {f (�r )} now has four (or six) components. It is easy to check
that plane wave solutions of the form {f (�r )} = {f0} exp(i�k · �r ) with any �k will satisfy
Eq. (7.4.4) provided {f0} is an eigenfunction of [h(�k)]

[h(�k)]{f0} = E{f0} (7.4.5)

This means that the effective mass equation in Eq. (7.4.4) will generate a bandstructure
identical to that obtained from the original [h(�k)].

We could use the finite difference method to convert Eq. (7.4.4) into a Hamiltonian
matrix, the same way we went from Eq. (7.1.3) to the matrix depicted in Fig. 7.4.2.
In Fig. 7.4.3, the unit cell matrices [Hnn] and the bond matrices [Hnm , n �= m] will
all be (4 × 4) or (6 × 6) matrices depending on whether we start from the two-band
(Eq. (7.4.2)) or the three-band (Eq. (7.4.3)) model. For example, the two-band model
leads to matrices [Hnm] of the form

[Hnm] ≡




−Pnm − Qnm 0 Snm −Rnm

0 −Pnm − Qnm −R∗
mn −S∗

mn

S∗
mn −Rnm −Pnm + Qnm 0

−R∗
mn −Snm 0 −Pnm + Qnm




where the individual terms Pnm , Qnm , etc. are obtained from the corresponding functions
P(�k), Q(�k) using the same procedure that we used to obtain a one-band effective mass
Hamiltonian (see Fig. 7.1.3) from the one-band h(�k) (see Eq. (7.1.2)).
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Fig. 7.4.3 The multi-band effective mass Hamiltonian matrix can be depicted schematically as a
3D network of unit cells (unrelated to the actual crystal structure) described by [Hnn] bonded to its
nearest neighbors by [Hnm]. These matrices will be (4 × 4) or (6 × 6) depending on whether we
start from the two-band (Eq. (7.4.2)) or the three-band (Eq. (7.4.3)) model.
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Fig. 7.4.4 Energy of the four highest energy levels of a GaAs quantum well sandwiched between
Al0.3Ga0.7As barriers (shown in inset) as a function of the well width W calculated from a two-band
effective mass model.

The same approach is used to write down the [Hnm] matrices for the three-band
model (Eq. (7.4.3)). For narrow-gap semiconductors, it is common to use a four-band
model where the matrices [Hnm] are (8 × 8) in size. Multi-band effective mass models
may not appear to represent much of a simplification relative to an atomistic model like
the sp3s∗ model. However, the simplification (numerical and even conceptual) can be
considerable for two reasons:
(1) the matrices [Hnm] are somewhat smaller (cf. (20 × 20) for the sp3s∗ model)
(2) the lattice can be much coarser and can have a simpler structure (simple cubic rather

than FCC) than the real atomic lattice, resulting in a smaller overall Hamiltonian
that is also easier to visualize.
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Fig. 7.4.5 The dispersion relation E(�k) as a function of ky with kx = 0 for the two highest
subbands of a quantum well with W = 5.1 nm, calculated from the two-band effective mass model.

A short example to illustrate the basic approach is given below, but as I have said earlier,
I will not discuss multi-band models (or any model other than the one-band effective
mass model) any further in this book.

An example: Figure 7.4.4 shows the energies of the four highest valence band levels
of a GaAs quantum well sandwiched between Al0.3Ga0.7As barriers calculated as a
function of the well width using the two-band model assuming

for GaAs: Ev = 0 eV, γ1 = 6.85, γ2 = 2.1, γ3 = 2.9
for AlAs: Ev = 0.75 eV, γ1 = 3.45, γ2 = 0.68, γ3 = 1.29

and interpolating linearly for the AlAs−GaAs alloy. Figure 7.4.5 shows the dispersion
relation E(�k) as a function of ky with kx = 0 for the four highest valence subbands of a
quantum well of width W = 5.1 nm.

EXERCISES
E.7.1.
(a) Plot E(k) along �–X and �–L from

h(�k) = Ec +
--h2k2

2mc

and compare with the plot from the sp3s∗ model (see Exercise E.5.2) over the
appropriate energy and wavevector range (cf. Fig. 6.1.2). What values of Ec and mc

give the best fit?
(b) Use a one-band effective mass model to calculate the energies of the two lowest

levels of a GaAs quantum well sandwiched between Al0.3Ga0.7As barriers as a
function of the well width. Assume that for GaAs, Ec = 0 eV, mc = 0.07m; and for
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AlAs, Ec = 1.25 eV, mc = 0.15m and interpolate linearly to obtain Ec and mc for
the AlAs−GaAs alloy (cf. Fig. 7.1.5).

(c) Use a one-band model to calculate the dispersion relation E(�k) as a function of the
magnitude of the in-plane wavevector �k = {kx ky} for the two lowest subbands
of a quantum well with W = 6.9 nm, using the same parameters as in part (b) above
(cf. Fig. 7.1.6).

E.7.2.
(a) Consider the MOS capacitor shown in Fig. 7.2.2 and calculate the self-

consistent conduction band profile and the electron density using a discrete lattice
with a = 0.3 nm. Assume that: (1) the thickness of the oxide is 2.1 nm and the
channel thickness is 3 nm; (2) µ = 0, Ec = 0 in the silicon and Ec = 3 eV in
the oxide; (3) dielectric constant ε = 4ε0 and mc = 0.25m everywhere; and (4) the
gate voltage VG = 0.25 V. Repeat with a channel thickness of 9 nm and also with
the gate voltage applied asymmetrically with 0 V on one gate and 0.25 V on the
other gate. Compare with Fig. 7.2.5.

(b) Calculate the electron density per unit area as a function of the gate voltage (applied
symmetrically to both gates) for the structure with a 3 nm channel and with a 9 nm
channel. Compare with Fig. 7.3.1. Calculate the effective capacitance from the
slope of the curve in the ON state and deduce an effective plate separation d by
equating the capacitance to 2ε/d.

E.7.3.
(a) Plot E(k) along �–X and �–L from the two-band model (see Eq. (7.4.2)) and

compare with the plot from the sp3s
∗

model (see Exercise E.5.3) over the appropriate
energy and wavevector range (cf. Fig. 7.4.1). Use γ1 = 6.85, γ2 = 2.1, γ3 = 2.9.

(b) Use the two-band model to calculate the energies of the four highest valence band
levels of a GaAs quantum well sandwiched between Al0.3Ga0.7As barriers as a
function of the well width. Assume that for GaAs: Ev = 0 eV, γ1 = 6.85, γ2 =
2.1, γ3 = 2.9 and for AlAs: Ev = −0.75 eV, γ1 = 3.45, γ2 = 0.68, γ3 = 1.29 and
interpolate linearly for the AlAs–GaAs alloy. Compare with Fig. 7.4.4.

(c) Use the two-band model to calculate the dispersion relation E(�k) as a function
of ky with kx = 0 for the four highest valence subbands of a quantum well with
W = 5.1 nm, using the same parameters as in part (b). Compare with Fig. 7.4.5.

E.7.4. A small device described by a (2 × 2) Hamiltonian matrix

H =
[

0 t0
t0 0

]

is in equilibrium with a reservoir having an electrochemical potentialµwith temperature
T = 0. Write down the density matrix if (i) µ = 0, (ii) µ = 2 assuming (a) t0 = +1
and (b) t0 = −1.
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E.7.5. A metallic nanotube of radius a has only one subband in the energy range of
interest, whose dispersion relation is given by ε(k) = --hvk, v being a constant and k being
the wavenumber along the length of the nanotube. Assume that (i) the electrochemical
potential µ = 0 and (ii) a coaxial gate of radius b is wrapped around the nanotube such
that the electrostatic capacitance CE = 2πεrε0/ln(b/a).
(a) How is the change (from the equilibrium value) in the electron density per unit

length related to the gate voltage VG?
(b) Would this make a good transistor?

E.7.6. Write down the appropriate effective mass equation if the dispersion relation
(in 1D) is given by

E = Ec +
--h2k2

2mc
+ αk4
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In Chapter 1, we saw that current flow typically involves a channel connected to two
contacts that are out of equilibrium with each other, having two distinct electrochemical
potentials. One contact keeps filling up the channel while the other keeps emptying it
causing a net current to flow from one contact to the other. In the next chapter we will
take up a quantum treatment of this problem. My purpose in this chapter is to set the
stage by introducing a few key concepts using a simpler example: a channel connected
to just one contact as shown in Fig. 8.1.

Since there is only one contact, the channel simply comes to equilibrium with it
and there is no current flow under steady-state conditions. As such this problem does
not involve the additional complexities associated with multiple contacts and non-
equilibrium conditions. This allows us to concentrate on a different physics that arises
simply from connecting the channel to a large contact: the set of discrete levels broadens
into a continuous density of states as shown on the right-hand side of Fig. 8.1.

In Chapter 1 I introduced this broadening without any formal justification, pointing
out the need to include it in order to get the correct value for the conductance. My
objective in this chapter is to provide a quantum mechanical treatment whereby the
broadening will arise naturally along with the “uncertainty” relation γ = --h/τ connect-
ing it to the escape rate 1/τ for an electron from the channel into the contact. Moreover,
we will see that in general the broadening is not just a number γ as we assumed, but
a matrix [�] of the same size as the Hamiltonian matrix [H], which can be energy
dependent (unlike [H]).

I will start in Section 8.1 from a Schrödinger equation describing the entire system,
channel + contact (see Fig. 8.2):

E

{
ψ

�

}
=

[
H τ

τ+ HR

] {
ψ

�

}
(8.1)

and show that the contact (or reservoir, of size R) can be eliminated to obtain an equation
for only the channel that has the form

E{ψ} = [H + 	]{ψ} + {S} (8.2)

183
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Fig. 8.1 A channel connected to one contact. The set of discrete levels broaden into a continuous
density of states as shown.
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Fig. 8.2 A channel described by [H] is connected through [τ ] to a contact described by [HR]. We
can write an equation for the channel alone that has the form shown in Eq. (8.2).

This is the central result that we will use as a starting point in Section 8.1 when we
discuss current flow between two contacts. Here {S} is a “source” term representing
the excitation of the channel by electron waves from the contact, while the self-energy
matrix [	] could be viewed as a modification of the Hamiltonian [H] so as to incorporate
the “boundary conditions,” in somewhat the same way that we added a couple of terms
to [H] to account for the periodic boundary conditions (see Eq. (1.3.3)).

However, there are two factors that make [	] much more than a minor modification
to [H]. Firstly, [	] is energy dependent, which requires a change in our viewpoint from
previous chapters where we viewed the system as having resonant energies given by
the eigenvalues of [H]. Since [	] is energy dependent, we would need to find each of
the eigenvalues εn iteratively, so that it is an eigenvalue of [H + 	(E = εn)]. It is more
convenient to think of the energy E as an independent variable and look for the response
of the device to incident electrons with different energies and that is the viewpoint we
will adopt from hereon.

Note that this represents a significant departure from the viewpoint we have held so
far, regardless of whether the [	] is energy-dependent or not. In the past, we have been
asking for the eigenenergies of an isolated channel, which is analogous to finding the
resonant frequencies of a guitar string (see Fig. 2.1.3). But now we wish to know how
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the “string” responds when it is excited by a tuning fork with any given frequency, that
is, how our channel responds when excited by an electron of any given energy from the
contact.

The second distinguishing feature of the self-energy 	 is that, unlike [H], it is NOT
hermitian and so the eigenvalues of H + 	 are complex. Indeed the anti-hermitian part
of 	

� = i[	 − 	+] (8.3)

can be viewed as the matrix version of the broadening γ introduced earlier for a one-
level device and in Section 8.2 we will relate it to the broadened density of states in
the channel. In Section 8.3, we will relate the broadening to the finite lifetime of the
electronic states, reflecting the fact that an electron introduced into a state does not stay
there forever, but leaks away into the contact.

You might wonder how we managed to obtain a non-hermitian matrix [H + 	] out
of the hermitian matrix in Eq. (8.1). Actually we do not really start from a hermitian
matrix: we add an infinitesimal quantity i0+ to the reservoir Hamiltonian HR making
it a “tiny bit” non-hermitian. This little infinitesimal for the reservoir gives rise to a
finite broadening � for the channel whose magnitude is independent of the precise
value of 0+. But this seemingly innocuous step merits a more careful discussion, for
it essentially converts a reversible system into an irreversible one. As we will explain
in Section 8.4, it also raises deeper questions about how large a system needs to be in
order to function as a reservoir that leads to irreversible behavior.

In this chapter we are using the concept of self-energy to account for the contacts
(like the source and drain) to the channel. However, the concept of self-energy is far
more general and can be used to describe all kinds of interactions (reversible and
irreversible) with the surroundings and not just the contacts. Indeed this is one of the
seminal concepts of many-body physics that is commonly used to describe complicated
interactions, compared to which our problem of contacts is a relatively trivial one that
could be treated with more elementary methods, though not quite so “elegantly.” My
objective, however, is not so much to provide an elegant treatment of a simple problem,
as to introduce a deep and profound concept in a simple context. In Chapter 10 we will
extend this concept to describe less trivial “contacts,” like the interaction with photons
and phonons.

8.1 Open systems

Our objective in this section is to obtain an equation of the form (see Eq. (8.2))

E{ψ} = [H + 	]{ψ} + {S} (8.1.1)
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Fig. 8.1.1 Toy example: a semi-infinite wire described by a one-band effective mass Hamiltonian.
The first point “0” is treated as the channel and the rest as the contact.

describing an open system, unlike the equation E{ψ}= [H ]{ψ} that we have been using
for closed systems so far. The basic idea is easy to see using a simple toy example.

Toy example: Consider a semi-infinite 1D wire described by a one-band effective
mass Hamiltonian of the form shown in Fig. 8.1.1. Let us treat the first point of the wire
labeled “0” as our channel and the rest of the wire labeled n, n < 0, as the contact.

If the “channel” were decoupled from the “contact” it would be described by the
equation:

Eψ = (Ec + 2t0)ψ︸ ︷︷ ︸
Hψ

Once we couple it to the “contact” this equation is modified to

Eψ = (Ec + 2t0)ψ − t0�−1 (8.1.2)

where the contact wavefunctions �n satisfy an infinite series of equations (n < 0)

E�n = −t0�n−1 + (Ec + 2t0)�n − t0�n+1 (8.1.3)

Now, since the equations in this infinite set all have the same structure we can use the
basic principle of bandstructure calculation (see Eq. (5.2.4)) to write the solutions in
the form of plane waves, labeled by k. Assuming the solution to consist of an incident
wave from the contact and a reflected wave back from the channel, we can write

�n = B exp (+ikna) + C exp (−ikna) (8.1.4)

where

E = Ec + 2t0 (1 − cos ka) (8.1.5)

Using Eq. (8.1.4) we can write

ψ ≡ �0 = B + C
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and

�−1 = B exp(−ika) + C exp(+ika)

so that

�−1 = ψ exp(+ika) + B[exp(−ika) − exp(+ika)]

Substituting back into Eq. (8.1.2) we obtain

Eψ = (Ec + 2t0)ψ︸ ︷︷ ︸
Hψ

− t0 exp(+ika)ψ︸ ︷︷ ︸
	ψ

+ t0 B[exp(+ika) − exp(−ika)]︸ ︷︷ ︸
S

(8.1.6)

which has exactly the form we are looking for with

	 = −t0 exp(+ika) (8.1.7a)

and

S = it0 2B sin ka (8.1.7b)

Note that the self-energy 	 is non-hermitian and is independent of the amplitudes B,
C of the contact wavefunction. It represents the fact that the channel wavefunction can
leak out into the contact. The source term S, on the other hand, represents the excitation
of the channel by the contact and is proportional to B. Let us now go on to a general
treatment with an arbitrary channel connected to an arbitrary contact.

General formulation: Consider first a channel with no electrons which is discon-
nected from the contacts as shown in Fig. 8.1.2a. The electrons in the contact have
wavefunctions {�R} that obey the Schrödinger equation for the isolated contact

[EI R − HR]{�R} = {0}
where [HR] is the Hamiltonian for the contact and [IR] is an identity matrix of the same
size as [HR]. Let me modify this equation to write

[EI R − HR + iη]{�R} = {SR} (8.1.8a)

where [η] = 0+[IR] is a small positive infinitesimal times the identity matrix, whose
significance we will discuss further in Section 8.4. At this point, let me simply note that
the term i[η]{�R} on the left of Eq. (8.1.8a) represents the extraction of electrons from
the contact while the term {SR} on the right of Eq. (8.1.8a) represents the reinjection of
electrons from external sources: such extraction and reinjection are essential to maintain
the contact at a constant electrochemical potential.

The results we will derive next are independent of the term{SR} that I have introduced
in Eq. (8.1.8a). Indeed, it might appear that we could set it equal to the term i[η]{�R},
thereby reducing Eq. (8.1.8a) to the Schrödinger equation [EI R − HR]{�R} = {0}.
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Fig. 8.1.2 (a) Channel contains no electrons and is disconnected from the contact where the
electrons occupy the states described by {�R}. (b) On connecting to the contact, the contact
wavefunctions {�R} “spill over” into the device giving rise to a wavefunction {ψ} in the channel
which in turn generates a scattered wave {χ} in the contact.

However, as I mentioned in the introduction, the transition from the Schrödinger equa-
tion to Eq. (8.1.8a) represents a fundamental change in viewpoint: E is no longer an
eigenenergy, but an independent variable representing the energy of excitation from
external sources. With the Schrödinger equation, the {�R} are essentially the eigen-
functions of [HR] that are non-zero only when the energy E matches one of the eigen-
energies of [HR]. On the other hand, the {�R} in Eq. (8.1.8a) are non-zero for all
energies E with peaks around the eigenenergies of [HR], whose sharpness depends on
the infinitesimal 0+.

When we couple the channel to the contact as shown in Fig. 8.1.2b, the contact
wavefunctions will “spill over” giving rise to a wavefunction {ψ} inside the device
which in turn will excite scattered waves {χ}. The overall wavefunction will satisfy
the composite Schrödinger equation for the composite contact–device system, which
we can write in two blocks:

contact device

contact
device

(
EI R − HR + iη −τ+

−τ EI − H

) {
�R + χ

ψ

}
=

{
SR

0

}
(8.1.8b)

where [H] is the device Hamiltonian. The different quantities appearing in Eq. (8.1.8b)
are not numbers (except for the energy E). They are matrices of different sizes:
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Contact Hamiltonian [HR], identity matrix [IR], damping [η]: (R × R)
Channel Hamiltonian [H], identity matrix [I]: (d × d)
Coupling Hamiltonian [τ ]: (d × R), [τ+]: (R × d)

or column vectors:

Contact wavefunction {�R}, {χ}, source {SR}: (R × 1)
Device wavefunction {ψ}: (d × 1)

Note that in going from Eq. (8.1.8a) to Eq. (8.1.8b), the term {SR} on the right-hand
side, representing the reinjection of electrons from external sources, is assumed to
remain unchanged. This allows us to make use of Eq. (8.1.8a) to eliminate {SR} from
Eq. (8.1.8b) to write:

[EI R − HR + iη]{χ} − [τ+]{ψ} = {0}
[EI − H ]{ψ} − [τ ]{χ} = [τ ]{�R}
We can use straightforward matrix algebra to express {χ} in terms of {ψ} from the first
equation

{χ} = G R τ+{ψ}
where

G R ≡ [EI R − HR + iη]−1 (8.1.9)

and

[η] = 0+[IR]

and substitute into the second equation to obtain

[EI − H − 	] {ψ} = {S} (8.1.10)

where

	 ≡ τG R τ+ S ≡ τ�R (8.1.11)

Equation (8.1.10) has exactly the form of the result (see Eq. (8.1.1)) that we are trying
to prove, while Eq. (8.1.11) gives us a formal expression that we can use to evaluate
	 and S. It is apparent from Eq. (8.1.9) that the quantity G R represents a property of
the isolated contact since it only involves the contact Hamiltonian HR . It is called the
Green’s function for the isolated contact, the physical significance of which we will
discuss in Section 8.2.

Evaluation of 	 and S: Looking at Eq. (8.1.11), it is not clear how we could evaluate
it for specific examples, since the matrix G R is of size (R × R), which is typically
huge since the size of the reservoir R is often infinite. However, we note that although
the matrix [τ ] is formally of size (d × R), in “real space” it only couples the r surface



190 Level broadening

elements of the reservoir next to the channel. So we could truncate it to a (d × r) matrix
and write

	 ≡ τ gR τ+

(d×d) (d×r ) (r ×r ) (r ×d)
(8.1.12a)

and

S ≡ τ φR

(d×1) (d×r ) (r ×1)
(8.1.12b)

where the surface Green’s function gR represents an (r × r) subset of the full Green’s
function G R involving just the r points at the surface, and {φR} represents an (r × 1)
subset of the contact wavefunction �R . For the toy example that we discussed at the
beginning of this section, we can show that

τ = −t0 φR = −i2B sin ka (8.1.13a)

and

gR = − (1/t0) exp(ika) (8.1.13b)

which, when substituted into Eqs. (8.1.12a, b), yields the same results that we obtained
earlier (cf. Eqs. (8.1.7a, b)). The expression for φR is obtained by noting that it is
equal to the wavefunction �−1 that we would have in the contact (at the point that is
connected to the channel) if it were decoupled from the channel. This decoupling would
impose the boundary condition that �0 = 0, making C = −B, and the corresponding
�−1 is equal to (−i2B sin ka) as stated above. The expression for gR takes a little
more algebra to work out and we will delegate this to exercise E.8.1 at the end of the
chapter.

Another way to evaluate 	 and S is to work in the eigenstate representation of the
contact, so that the contact Hamiltonian HR is diagonal and the Green’s function G R

is easily written down in terms of the eigenvalues εn of HR:

[G R(E)] =




1

E − ε1 + i0+ 0 · · ·

0
1

E − ε2 + i0+ · · ·
· · · · · · · · · · · ·


 (8.1.14)

In this representation, the coupling matrix [τ ] cannot be truncated to a smaller size and
we have to evaluate an infinite summation over the eigenstates of the reservoir:

	i j (E) =
∑

n

[τ ]in [τ+]nj

E − εn + i0+ (8.1.15a)

Si (E) ≡
∑

n

[τ ]in {�R}n (8.1.15b)
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However, this summation can often be carried out analytically after converting to a
summation. As an example, Exercise E.8.2 shows how we can obtain our old results
(Eqs. (8.1.7a)) for the toy problem starting from Eq. (8.1.15a).

Before moving on let me briefly summarize what we have accomplished. A channel
described by a Hamiltonian [H] of size (d × d) is coupled to a contact described by a
(R × R) matrix [HR], where the reservoir size R is typically much larger than d (R � d).
We have shown that the effect of the reservoir on the device can be described through
a self-energy matrix 	(E) of size (d × d) and a source term S(E) of size (d × 1).

8.2 Local density of states

We have just seen that a channel coupled to a contact can be described by a modified
Schrödinger equation of the form E{ψ} = [H + 	]{ψ} + {S} where {S} represents
the excitation from the contact and the self-energy 	 represents the modification of
the channel by the coupling. Unlike [H], [H + 	] has complex eigenvalues and the
imaginary part of the eigenvalues both broadens the density of states and gives the
eigenstates a finite lifetime. In this section we will talk about the first effect and explain
how we can calculate the density of states in an open system. In the next section we
will talk about the second effect.

Consider the composite system consisting of the channel and the contact. Earlier, in
Eq. (6.2.14), we agreed that a system with a set of eigenvalues εα has a density of states
given by

D(E) =
∑

α

δ(E − εα) (8.2.1)

How can different energy levels have different weights as implied in the broadened
lineshape on the right-hand side of Fig. 8.1? Doesn’t Eq. (8.2.1) tell us that each
energy level gives rise to a delta function whose weight is one? The problem is that
the density of states in Eq. (8.2.1) does not take into account the spatial distribution
of the states. If we want to know the local density of states in the channel we need to
weight each state by the fraction of its squared wavefunction that resides in the channel
denoted by d:

D(d; E) =
∑

α

|φα(d)|2δ(E − εα)

For example, suppose the device with one energy level ε were decoupled from the
reservoir with a dense set of energy levels {εR}. The total density of states would then
be given by

D(E) =
∑

α

δ(E − εα) = δ(E − ε) +
∑

n

δ(E − εn)
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Fig. 8.2.1 A channel with a single energy level ε coupled to a reservoir with a dense set of energy
levels {εn}. The local density of states on the channel shows a single sharp level before being
coupled to the reservoir. But on being coupled, it shows a series of levels of varying heights
reflecting the fraction of their squared wavefunction that reside in the channel.

while the local density of states on the channel would simply be given by

D(d; E) =
∑

α

|φα(d)|2δ(E − εα) = δ(E − ε)

since the reservoir states have wavefunctions that have no amplitude in the channel at
all. Once we couple the channel to the reservoir, things will not be so clear cut any
more. There will be one level with its wavefunction largely on the channel, but there
will be many other neighboring states with their wavefunctions residing partially on
the channel. If we look at the local density of states in the channel we see a series of
energy levels with varying heights, reflecting the fraction of the squared wavefunction
residing in the channel (Fig. 8.2.1).

In general we can define a local density of states (LDOS) D(�r ; E) that weights each
level by the square of its wavefunction at the location �r :

D(�r ; E) =
∑

α

|�α(�r )|2δ(E − εα) (8.2.2)

which can be viewed as the diagonal element (divided by 2π ) of a more general concept
called the spectral function [A(E)]:

A(�r , �r ′; E) = 2π
∑

α

φα(�r )δ(E − εα)φ∗
α(�r ′) (8.2.3)

just as the electron density

n(�r ) =
∑

α

|φα(�r )|2 f0(εα − µ) (8.2.4)

can be viewed as the diagonal element of the density matrix:

ρ(�r , �r ′) =
∑

α

φα(�r ) f0(εα − µ)φ∗
α(�r ′) (8.2.5)
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We argued in Section 4.3 that Eq. (8.2.5) is just the real-space representation of the
matrix relation:

[ρ] = f0([H ] − µ[I ]) (8.2.6)

Using the same argument we could write the spectral function as

[A(E)] = 2πδ(E[I ] − [H ]) (8.2.7)

and view Eq. (8.2.3) as its real-space representation. If we use the eigenstates of H as
our basis then [H] is diagonal:

[H ] =




ε1 0 0 · · ·
0 ε2 0 · · ·
0 0 ε3 · · ·

· · · · · ·




and so is [A(E)]:

[A(E)] = 2π




δ(E − ε1) 0 0 . . .

0 δ(E − ε2) 0 . . .

0 0 δ(E − ε3) . . .

. . . . . . . . . . . .


 (8.2.8)

Equation (8.2.3) transforms this matrix into a real-space representation. In principle
we could write the spectral function in any representation and its diagonal elements
will tell us the LDOS (times 2π ) at energy E in that representation, just as the diagonal
elements of the density matrix tell us the local electron density in that representation.
The total number of electrons N is given by the sum of all the diagonal elements of [ρ]
or the trace of [ρ], which is independent of representation:

N = Trace[ρ] =
∑

α

f0(εα − µ)

Similarly, the total density of states given by the trace of the spectral function [A]
divided by 2π is independent of representation and is readily written down from the
eigenstate representation:

D(E) = 1

2π
Trace[A(E)] =

∑
α

δ(E − εα) (8.2.9)

Sum rule: An important point to note is that if we look at the total number of states at
any point integrated over all energy, the answer is one. If we start with a device having
one level and couple it to a reservoir, it will broaden into a series of levels (Fig. 8.2.1) of
varying strengths representing the fact that the wavefunction for each level contributes
to different extents to the device. But if we add up the strengths of all the levels the
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answer is the same as that of the original level. What the device loses from its one level
due to hybridization, it gains back from the other levels so that the broadened level in
the device can accommodate exactly the same number of electrons that the one discrete
level could accommodate before it got coupled to the reservoir. This sum rule could be
stated as follows:

+∞∫
−∞

dE D(�r ; E) = 1

and can be proved by noting that
+∞∫
−∞

dE D(�r ; E) is basically the diagonal element of

the matrix
+∞∫
−∞

dE[A(E)]/2π evaluated in the real-space representation. It is easy to see

from Eq. (8.2.8) that in the eigenstate representation

+∞∫
−∞

dE

2π
[A(E)] =




1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·

· · · · · · · · · · · ·


 since

+∞∫
−∞

dEδ(E − ε) = 1

The point is that this quantity will look the same in any representation since the identity
matrix remains unchanged by a change in basis.

Green’s function: In evaluating the spectral function it is convenient to make use of
the identity

2πδ(E − εα) =
[

2η

(E − εα)2 + η2

]
η→0+

= i

[
1

E − εα + i0+ − 1

E − εα − i0+

]
(8.2.10a)

to write

2πδ(EI − H ) = i{[(E + i0+)I − H ]−1 − [(E − i0+)I − H ]−1} (8.2.10b)

where 0+ denotes a positive infinitesimal (whose physical significance we will discuss
at length in Section 8.4). Equation (8.2.10b) would be a simple extension of (8.2.10a)
if the argument (EI − H) were an ordinary number. But since (EI − H) is a matrix,
Eq. (8.2.10b) may seem like a big jump from Eq. (8.2.10a). However, we can justify it
by going to a representation that diagonalizes [H], so that both sides of Eq. (8.2.10b) are
diagonal matrices and the equality of each diagonal element is ensured by Eq. (8.2.10a).
We can thus establish the matrix equality, Eq. (8.2.10b) in the eigenstate representation,
which should ensure its validity in any other representation.

Using Eqs. (8.2.7) and (8.2.10b) we can write

A(E) = i[G(E) − G+(E)] (8.2.11)
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where the retarded Green’s function is defined as

G(E) = [(E + i0+)I − H ]−1 (8.2.12a)

and the advanced Green’s function is defined as

G+(E) = [(E − i0+)I − H ]−1 (8.2.12b)

In the next section we will see how the Green’s function (and hence the spectral function)
can be evaluated for open systems.

Density matrix: Starting from [ρ] = f0([H ] − µ[I ]) (Eq. ( 8.2.6)) we can write

[ρ] =
+∞∫

−∞
dE f0(E − µ)δ ([EI − H ])

=
+∞∫

−∞

dE

2π
f0(E − µ)[A(E)] (8.2.13)

which makes good sense if we note that [A(E)]/2π is the matrix version of the density
of states D(E), in the same way that the density matrix [ρ] is the matrix version of the
total number of electrons N. We could view Eq. (8.2.10) as the matrix version of the
common sense relation

N =
+∞∫

−∞
dE f0(E − µ)D(E)

which simply states that the number of electrons is obtained by multiplying the number
of states D(E) dE by the probability f0(E) that they are occupied and adding up the
contributions from all energies.

Why should we want to use Eq. (8.2.13) rather than Eq. (8.2.6)? In previous chapters
we have evaluated the density matrix using Eq. (8.2.6) and it may not be clear why
we might want to use Eq. (8.2.13) since it involves an extra integration over energy.
Indeed if we are dealing with the entire system described by a matrix [H] then there is
no reason to do so. But if we are dealing with an open system described by a matrix of
the form (see Fig. 8.2)

H =
[

H τ

τ+ HR

]

then Eq. (8.2.6) requires us to deal with the entire matrix which could be huge compared
with [H] since the reservoir matrix [HR] is typically huge – that is why we call it a
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reservoir! The spectral function appearing in Eq. (8.2.13) and the Green’s function are
technically just as large

A =
[

A AdR

ARd ARR

]
G =

[
G GdR

GRd GRR

]

but we only care about the top (d × d) subsection of this matrix and the great advantage
of the Green’s function approach is that this subsection of [G(E)], and hence [A(E)], can
be calculated without the need to deal with the full matrix. This is what we will show
next, where we will encounter the same self-energy matrix 	 that we encountered in
the last section.

Self-energy matrix – all over again: The overall Green’s function can be written from
Eq. (8.2.12a) as

G ≡
[

G GdR

GRd GRR

]
=

[
(E + i0+)I − H −τ

−τ+ (E + i0+)I − HR

]−1

(8.2.14)

The power of the Green’s function method comes from the fact that we can evaluate
the (d × d) subsection [G] that we care about exactly from the relation

G = [(E + i0+)I − H − 	(E)]−1 (8.2.15)

where 	(E) is the self-energy matrix given in Eq. (8.1.11).
Equation (8.2.15) follows from Eq. (8.2.14) using straightforward matrix algebra.

The basic result we make use of is the following. If[
a b
c d

]
=

[
A B
C D

]−1

(8.2.16a)

then[
A B
C D

] [
a b
c d

]
=

[
I 0
0 I

]

so that Aa + Bc = I and Ca + Dc = 0 → c = −D−1Ca. Hence

a = (A − BD−1C)−1 (8.2.16b)

Comparing Eq. (8.2.16a) with Eq. (8.2.14) and making the obvious replacements we
obtain from Eq. (8.2.16b):

G = [
(E + i0+)I − H − τG Rτ+]−1

where G R = [
(E + i0+)I − HR

]−1

which yields the result stated above in Eq. (8.2.15).
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Equation (8.2.16b) is a well-known result that is often used to find the inverse of
large matrices by partitioning them into smaller ones. Typically in such cases we
are interested in finding all the component matrices a, b, c, and d and they are all
approximately equal in size. In our problem, however, the matrices a, A are much
smaller than the matrices d, D and we only want to find a. Equation (8.2.15) allows
us to evaluate [G] by inverting a matrix of size (d × d) rather than the full (d + R) ×
(d + R) matrix in Eq. (8.2.14). This can be a major practical advantage since R is
typically much larger than d. But the idea of describing the effect of the surroundings
on a device through a self-energy function [	] is not just a convenient numerical tool.
It represents a major conceptual step and we will try to convey some of the implications
in the next section. For the moment, let us look at a couple of examples, one analytical
and one numerical.

Analytical example: Consider a uniform infinite 1D wire modeled with a one-band
effective mass Hamiltonian of the form shown in Fig. 8.2.2. Since this is a uniform
wire the eigenstates can be catalogued in terms of k obeying a dispersion relation and
we can use our previous results to write the DOS per unit cell as

D(E) = a/π --hv(E) where v = (1/--h) dE/dk

Now let us obtain this same result using the Green’s function method developed in this
section. We replace the infinite 1D wire with a single unit cell and add self-energy terms
to account for the two semi-infinite wires on either side (Fig. 8.2.3).

The Green’s function for this single cell is a (1 × 1) matrix or a number

G(E) = 1

E − (Ec + 2t0 − t0 exp[ika] − t0 exp[ika])

Ec + 2t0 t0 ≡ h2/2mca2

− t0 − t0
a

z

Fig. 8.2.2

Σ2Σ1

Ec + 2t0

Fig. 8.2.3
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Ec + 2t0 Ec + 2t0 Ec + 2t0

+ Un−1 + Un+1+ Un

− t0

t0 ≡ h2/2mca2

a
− t0 − t0

Fig. 8.2.4

which is simplified making use of the dispersion relation E = Ec + 2t0(1 − cos ka) to
obtain

G(E) = 1

t0 exp[ika] − t0 exp[−ika]
= 1

2it0 sin ka

from which the DOS is obtained:

D(E) = i[G − G+]/2π

= 1/2π t0 sin ka = a/π --hv

which is the same as the previous result since --hv = dE/dk = 2at0 sin ka

Numerical example: To get a feeling for the self-energy method, it is instructive
to redo the problem of finding the equilibrium electron density in a 1D box that we
discussed in Chapter 4 (see Fig. 4.3.1). We consider a similar problem, namely, a 1D
box with a potential U(x) that changes linearly from −0.1 eV at one end to +0.1 eV at
the other. We model it using a one-band Hamiltonian with a lattice of 50 points spaced
by a = 2 Å and with the effective mass mc equal to 0.25 times the free electron mass m
(see Fig. 8.2.4).

We wish to evaluate the electron density n(z) in the box assuming that it is in equi-
librium with an electrochemical potential µ = Ec + 0.25 eV and kBT = 0.025 eV. The
electron density is given by the diagonal elements of the density marix ρ, which we
can evaluate in one of two ways.
(1) We could assume periodic boundary conditions: H(1, 100) = H(100, 1) = −t0 and

then evaluate ρ from Eq. (8.2.6).
(2) We could add self-energy terms (Eq. (8.1.7a)) which have non-zero values

of −t0 exp[ika] only on the end points (1, 1) or (100, 100), evaluate the Green’s
function from Eq. (8.2.15)

G = [(E + i0+)I − H − 	1 − 	2]−1

obtain the spectral function from Eq. (8.2.11), and then calculate the equilibrium
density matrix from Eq. (8.2.13).

Figure 8.2.5 shows that the two results agree well. Indeed some discrepancy is likely
due to errors introduced by the discreteness of the energy grid used for the integration
in the last step of the method. We have used a grid having 250 points in the energy range
Ec − 0.1 eV < E < Ec + 0.4 eV. However, the oscillations in the first method arise
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Fig. 8.2.5 Plot of electron density n(z) calculated for a 1D wire with a linear potential U(z) using
periodic boundary conditions (solid curve) and using the self-energy method to enforce open
boundary conditions (crosses).
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Fig. 8.2.6 Local density of states (LDOS) at two ends of a 1D wire with a linear potential U(x)
impressed across it. The corresponding electron density is shown in Fig. 8.2.5. µ = Ec+ 0.25 eV
and kBT = 0.025 eV.

from the standing waves in a closed ring (resulting from the use of periodic boundary
conditions) which are absent in the open system modeled by the self-energy method.
The oscillations in method 1 will be less pronounced for longer devices (or for a larger
effective mass) because the energy levels will become closer together.

As we know, the effect of the self-energy is to broaden the energy level, but its inte-
grated strength is unchanged because of the sum rule mentioned earlier. Consequently
the distinction between the two methods is somewhat obscured when we look at the
electron density since it involves an integration over energy. The self-energy method
allows us to investigate in detail the local density of states in different parts of the device
(see Fig. 8.2.6).
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8.3 Lifetime

In Section 8.2 we introduced the concept of the Green’s function G(E) as a convenient
way to evaluate the spectral function A(E) based on the mathematical identity:

2πδ(EI − H ) = i{[(E + i0+)I − H ]−1 − [(E − i0+)I − H ]−1}
A(E) = i[G(E) − G+(E)]

However, as we will explain in this section, the Green’s function has a physical sig-
nificance of its own as the impulse response of the Schrödinger equation and this will
help us understand the “uncertainty” relation between the broadening of a level and the
finite lifetime, both of which result from the coupling to the reservoir. To understand
the meaning of the Green’s function let us use the eigenstates of H as our basis so that
the Green’s function is diagonal:

[G(E)] =




1

E − ε1 + i0+ 0 0 · · ·

0
1

E − ε2 + i0+ 0 · · ·

0 0
1

E − ε3 + i0+ · · ·
· · · · · · · · · · · ·




(8.3.1)

Consider the Fourier transform of G(E) defined by

[G̃R(t)] =
+∞∫

−∞

dE

2π --h
e+iEt/-h[G(E)]

which is also diagonal and looks like this:

[G̃R(t)] = −i
--h

ϑ(t) e−0+t




exp (−iε1t/--h) 0 0 · · ·
0 exp (−iε2t/--h) 0 · · ·
0 0 exp (−iε3t/--h) · · ·

· · · · · · · · · · · ·



(8.3.2)

It takes a little work (involving contour integration on a complex plane) to get from
Eq. (8.3.1) to Eq. (8.3.2). But it is quite straightforward to go the other way from
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m n

δ(t)

Fig. 8.3.1

Eq. (8.3.2) to Eq. (8.3.1) using the inverse transform relation:

[G(E)] =
+∞∫

−∞
dt e+iEt/-h[G̃R(t)]

= −i
--h

+∞∫
−∞

dt eiEt/-hϑ(t)e−iεt/-he−0+t

= −i
--h

+∞∫
−∞

dt ei(E−ε)t/-he−0+t = 1

E − ε + i0+

I should mention that here I am not using the superscript “R” to denote reservoir. I
am using it to denote “retarded” which refers to the fact that the function G̃R(t) is zero
at all times t < 0. It is easy to see that the diagonal elements of this function satisfy the
differential equation(

i--h
∂

∂t
− εα

)
G̃R

αα(t) = δ(t)

so that we can write(
i--h

∂

∂t
− [H ]

)
[G̃R(t)] = [I ]δ(t) (8.3.3)

suggesting the interpretation of G̃R(t) as the impulse response of the Schrödinger
equation(

i--h
∂

∂t
− [H ]

)
{�(t)} = 0 (8.3.4)

The (n, m) element of this matrix G̃R
nm(t) tells us the nth component of the wavefunction

if the system is given an impulse excitation at its mth component (see Fig. 8.3.1).
From this point of view it seems natural to expect that the Green’s function should

be “retarded,” since we cannot have a response before the impulse is applied (which
is at t = 0). Mathematically, however, this is not the only solution to Eq. (8.3.3). It is
straightforward to show that the “advanced” Green’s function

[G̃A(t)] = [G̃R(−t)]∗ (8.3.5)
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 ˜ Gaa(t) 
R

 ˜ Gaa(t) 
A

 ˜ Aaa(t) 

  

  Retarded      Advanced       Spectral function 

Green's function         Green's function   

exp(+ 0+ t) exp(− 0+ t)

Fig. 8.3.2 Sketch of the magnitude of any diagonal element (in the eigenstate representation) of
the retarded and advanced Green’s functions and the spectral function in the time domain.

satisfies the same equation(
i--h

∂

∂t
− [H ]

)
[GA(t)] = [I ] δ(t) (8.3.6)

but it is zero at all times after t = 0. In the eigenstate representation we can write from
Eqs. (8.3.2) and (8.3.5):

[G̃A(t)] = i
--h
ϑ(−t)e+0+t




exp(−iε1t/--h) 0 0 · · ·
0 exp(−iε2t/--h) 0 · · ·
0 0 exp(−iε3t/--h) · · ·

· · · · · · · · · · · ·




(8.3.7)

This is actually the Fourier transform of G+(E) (once again it is easier to do the inverse
transform). The difference between the retarded and advanced Green’s function in the
energy domain:

Retarded Advanced
G(E) = [(E + i0+)I − H ]−1 G+(E) = [(E − i0+)I − H ]−1

looks very minor: the two only differ in the sign of an infinitesimally small quantity
0+; one is tempted to conclude wrongly that they differ only in some insignificant
sense. In the time domain, however, their difference is hard to miss. One is zero for
t < 0 (causal) and the other is zero for t > 0 (non-causal). One is interpreted as the
response to an impulse excitation at t = 0; the other has no physical interpretation but is
a mathematically valid solution of the same equation with a different unphysical initial
condition. Figure 8.3.2 shows the magnitude of one of the diagonal elements of G̃R

αα(t)
and G̃A

αα(t). Note that the spectral function is proportional to the difference between
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the retarded and advanced Green’s functions (see Eq. (8.2.11)):

ÃR
αα(t) = i

[
G̃R

αα(t) − G̃A
αα(t)

]
Since both Green’s functions satisfy the same differential equation, the spectral function
[A(t)] satisfies the homogeneous differential equation without the impulse excitation:(

i--h
∂

∂t
− [H ]

)
[ Ã(t)] = [0]

and hence has no discontinuity at t = 0 unlike G̃R(t) and G̃A(t) as shown in Fig. 8.3.2.

Physical meaning of the self-energy: We saw in Section 8.2 that we can calculate the
device subsection of the full Green’s function (Eq. (8.2.14)):

G ≡
[

G GdR

GRd GRR

]
=

[
(E + i0+)I − H −τ

−τ+ (E + i0+)I − HR

]−1

exactly from the relation (Eq. (8.2.15)).

G = [(E + i0+)I − H − 	(E)]−1

where the self-energy

	(E) = τgR(E)τ+

can be calculated from a knowledge of the surface property of the reservoir (gR) and
the device–reservoir coupling (τ ).

Now that we have interpreted the time domain Green’s function as the impulse
response of the Schrödinger equation (see Eq. (8.3.4)), we could write a similar equation
for the device subset of the Green’s function by Fourier transforming Eq. (8.2.15). This
would be straightforward if the self-energy 	 were independent of the energy E:(

i--h
∂

∂t
− [H ] − [	]

)
[G̃R(t)] = [I ] δ(t) (8.3.8a)

If we take the energy dependence into account then the Fourier transform looks more
complicated. The product of 	(E) and G(E) when transformed becomes a convolution
in the time domain:(

i--h
∂

∂t
− [H ]

)
[G̃R(t)] −

∫
dt ′ [	̃(t − t ′)][G̃R(t ′)] = [I ] δ(t) (8.3.8b)

To get some insight into the physical meaning of 	 let us ignore this “detail.” In fact, let
us make the problem very simple by considering a small device with just a single energy
level ε (Fig. 8.3.3) so that [H] and [	] are both simple numbers rather than matrices:(

i--h
∂

∂t
− ε − 	

)
G̃R(t) = δ(t)
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e

Reservoir

Fig. 8.3.3

The solution to this equation

G̃R(t) = − i
--h

e−i(ε+	)t/-hϑ(t)

tells us the wavefunction in response to an impulse excitation of the device at t = 0.
We can write

G̃R(t) = − i
--h

e−iε′t/-he−γ t/2-hϑ(t) (8.3.9)

where

ε′ = ε + Re	 and γ = −2Im	 (8.3.10)

The real part of the self-energy causes a shift in the device energy level from ε to ε′,
while the imaginary part has the effect of giving the eigenstates a finite lifetime. This
is evident from the squared magnitude of this wavefunction which tells us how the
probability decays with time after the initial excitation:

|G̃R(t)|2 = 1
--h2 ϑ(t) exp(−γ t/--h)

Clearly we can relate the lifetime of the state to the imaginary part of the self-energy:

1

τ
= −γ

--h
= −2Im	

--h
(8.3.11)

We can identify this as the “uncertainty” relation between lifetime and broadening if
we note that the imaginary part of the self-energy is equal to the broadening of the
density of states. To see this we note that the Fourier transform of the simple version
of the Green’s function in Eq. (8.3.9) is given by

G(E) = 1

E − ε′ + iγ /2

so that

A(E)

2π
≡ D(E) = i

(
1

E − ε′ + iγ /2
− 1

E − ε′ − iγ /2

)
= γ

(E − ε′)2 + (γ /2)2
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v = (2at0/h)sin ka

CONTACT 

Ec + 2t0

−t0 −t0
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Fig. 8.3.4

showing that the LDOS on the device is broadened into a Lorentzian of width γ equal to
twice the imaginary part of the self-energy. Of course, the lineshape in general need not
be Lorentzian. We have obtained this result because in this discussion we ignored the
energy dependence of the self-energy (in the time domain one would call it the memory
effect of the reservoir) and used Eq. (8.3.8a) instead of (8.3.8b) for the purpose of clarity
in this physical discussion.

We saw in Section 8.1 that the self-energy for a one-dimensional contact is diagonal
with two non-zero entries:

	(1, 1) = −t0 exp(ika) = −t0 cos (ka) − it0 sin (ka)

From Eq. (8.3.11) we could write the corresponding lifetime for site 1 as

1

τ
= γ

--h
= 2t0 sin ka

--h

It is interesting to note that the velocity associated with a particular k in the wire is
given by

v = 1
--h

∂E

∂k
= 1

--h

∂

∂k
[2t0(1 − cos ka)] = 2at0

--h
sin ka

so that we can write

1

τ
= γ

--h
= v

a

which is intuitively satisfying since we expect the escape rate from a given cell to equal
the escape velocity divided by the size of a cell (see Fig. 8.3.4). Indeed one could
use this principle to write down the imaginary part of the self-energy approximately
for more complicated geometries where an exact calculation of the surface Green’s
function may not be easy:

Im	(E) ≈ --hv(E)/R (8.3.12)
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Here R is a linear dimension of the unit cell, the precise arithmetic factor depending on
the specific geometry.

Knowing the imaginary part, one can calculate the real part from a general principle
independent of the specific details. The principle is that the real and imaginary parts
must be Hilbert transforms of each other (⊗ denotes convolution)

Re 	(E) = − 1

π

∫
dE ′ Im	(E ′)

E − E ′ = Im	(E) ⊗
(

− 1

πE

)
(8.3.13)

so that the self-energy can be written in the form

	(E) = [Re	(E)] + i [Im	(E)] = iIm	(E) ⊗
(

δ(E) + i

π E

)
(8.3.14)

This principle is obeyed by any function whose Fourier transform is causal (that is, the
Fourier transform is zero for t < 0). The self-energy function is causal because it is
proportional to the surface Green’s function of the reservoir (see Eq. (8.1.11)), which
is causal as we discussed earlier. To see why causal functions obey this principle, we
note that δ(E) + (i/πE) is the Fourier transform of the unit step function: ϑ(t). This
means that any time domain function of the form ϑ(t) f(t) has a Fourier transform that
can be written as (product in the time domain becomes a convolution in the transform
domain)

F(E) ⊗
(

δ(E) + i

πE

)
where the transform of f(t) is F(E) which can be identified with i Im 	(E) in Eq.
(8.3.14).

Broadening matrix: In the simple case of a one-level device we have seen that the
imaginary part of the self-energy gives us the broadening or inverse lifetime of the
level (see Eq. (8.3.11)). More generally, the self-energy is a matrix and one can define
a broadening matrix �(E) equal to its anti-hermitian component:

�(E) = i[	(E) − 	+(E)] (8.3.15)

This component of the self-energy is responsible for the broadening of the level, while
the hermitian component

	H(E) = 1

2
[	(E) + 	+(E)]

can conceptually be viewed as a correction to the Hamiltonian [H]. Overall, we could
write

H + 	(E) = [H + 	H(E)] − i�(E)

2
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We have often made use of the fact that we can simplify our description of a problem by
using the eigenstates of the Hamiltonian [H] as our basis. For open systems we would
want to use a representation that diagonalizes [H + 	H] in our energy range of interest.
If the same representation also diagonalizes [�], then the problem could be viewed
simply in terms of many one-level devices in parallel. But in general this may not be
the case. The representation that diagonalizes [H + 	H] may not diagonalize [�] and
vice versa. We can then diagonalize one or the other but not both and interesting new
physics beyond the one-level example can result.

8.4 What constitutes a contact (reservoir)?

Let me quickly summarize what we did in this chapter before we discuss an important
conceptual issue. We started in Section 8.1 from the “Schrödinger” equation for the
channel + the contact(

EI R − HR + iη −τ+

−τ EI − H

) {
�R + χ

ψ

}
=

{
SR

0

}
(8.4.1)

and obtained an equation for the channel alone

[E I − H − 	]{ψ} = {S} (8.4.2)

whose solution can be written in the form

{ψ} = [G]{S}, where [G] = [EI − H − 	]−1 (8.4.3)

We then discussed the significance of the Green’s function G and the self-energy 	 in
both the energy and time domains.

Now if we look back at the steps in Section 8.1 that lead from Eq. (8.4.1) to (8.4.2),
it should be apparent that someone could just as well treat the contact as primary and
represent the effect of the channel on it through a self-energy. Mathematically, [H] and
[HR] are on an equal footing. The only “asymmetry” comes from the terms iη and SR

which were added “by hand” to account for the extraction and reinjection of electrons
from the contact by an external source (usually iη is justified as a mathematical artifice
designed to ensure the convergence of a Fourier transform). But these infinitesimal
terms could just as well have been added “symmetrically” and so it is natural to ask
what distinguishes the channel from the contact. A related question is how small is the
infinitesimal η: neV? meV? Does it matter?

To answer these questions let us look at a simple example. Consider a “molecule”
described by a (2 × 2) Hamiltonian matrix

H =
[

ε τ

τ ∗ ε1

]
(8.4.4)
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Fig. 8.4.1

We could calculate the (2 × 2) spectral function [A(E)] from the relation ([η] = 0+[I ],
I being the (2 × 2) identity matrix)

[A] = i[G − G+], where [G] = [EI − H + iη]−1 (8.4.5)

and look at its diagonal elements to obtain the local density of states (LDOS) on
each of the two sites. For example with ε = −0.25 eV, ε1 = +0.25 eV, τ = 0.5 eV and
0+ = 0.01 eV we obtain the plots shown in Fig. 8.4.1. Note that there are two peaks
located around each of the two eigenenergies obtained by setting the determinant of
(EI – H) equal to zero:

det

[
E − ε − τ

−τ ∗ E − ε1

]
= 0 (8.4.6)

The two peaks are of unequal height reflecting the fact that the eigenfunction corre-
sponding to the lower eigenenergy is skewed towards site “1” while the eigenfunction
corresponding to the higher energy is skewed towards site “2”.

Now if we are interested primarily in site 1 we could represent the effect of site 2
through a self-energy

	(E) = |τ |2
E − ε1 + i0+ (8.4.7)

and calculate the LDOS from a (1 × 1) spectral function:

[a] = i[g − g+], where [g] = [E − ε − 	]−1 (8.4.8)

The result would be exactly what we obtained earlier from the (2 × 2) spectral function.
On the other hand if we are interested primarily in site “2” we could represent the effect
of site 1 through a self-energy

	1(E) = |τ |2
E − ε + i0+ (8.4.9)
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ε

 γf (ε) /h

N
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γN/h

Fig. 8.4.2

and calculate the LDOS from a (1 × 1) spectral function:

[a1] = i[g1 − g+
1 ], where [g1] = [E − ε1 − 	1]−1 (8.4.10)

Again the answer would match the result obtained from the (2 × 2) spectral function.
In short, we could treat site 1 as the channel and site 2 as the contact or vice versa.
Either choice is mathematically acceptable.

Neither of these atomic contacts, however, can be called a “reservoir” in the sense it
is commonly understood. In Chapter 1 I wrote the current flow between a contact and
a channel in the form (see Eq. (1.2.2a) and Fig. 8.4.2)

I = Inflow − Outflow = (1/h) (γ f − γ N )

The essential characteristic of a “reservoir” is that the rate constant γ for outflow and
the rate of inflow γ f remain unaffected by the filling and emptying of states and other
dynamical details.

The atomic “contacts” we have just described do not satisfy this criterion. For exam-
ple, if we consider site 2 as the contact (Eq. (8.4.7)) the broadening (or escape rate) is
given by

γ = i[	 − 	+] = |τ |2 0+

(E − ε1)2 + (0+)2
(8.4.11)

It is not only energy-dependent (sharply peaked around E = ε1) but also affected
strongly by the precise value of the infinitesimal 0+. This means that the escape rate
(γ /h) for electrons from the “channel” is affected by the rate at which they are extracted
from the “contact.” A “proper” reservoir should provide a constant escape rate inde-
pendent of the value of 0+. This is possible if it consists of numerous closely spaced
energy levels, as we will now show.

Consider a channel with a single state with ε = 0 (Fig. 8.4.3) coupled to a contact
with numerous closely spaced levels such that the overall system is described by a large
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i0+ e

er , r = 1, 2, …

Reservoir

Fig. 8.4.3 A device with a single state with ε = 0 is coupled to a reservoir that consists of
numerous closely spaced energy levels {εr , r = 1, 2, ...}.

Hamiltonian matrix of the form

[H ] =




ε τ1 τ2 τ3 · · ·
τ ∗

1 ε1 0 0 · · ·
τ ∗

2 0 ε2 0 · · ·
τ ∗

3 0 0 ε3 · · ·
· · ·




We can describe the effect of the contact through a (1 × 1) self-energy “matrix”
(see Eq. (8.1.15a)) given by

	 =
∑

r

|τr |2
E − εr + i0+ (8.4.12)

so that the broadening is given by

γ = i[	 − 	+] =
∑

r

|τr |2 0+

(E − εr )2 + (0+)2
(8.4.13)

If the levels are very closely spaced, we can replace the summation by an integral

γ =
∫

dεr DR(εr ) |τr |2 0+

(E − εr )2 + (0+)2
(8.4.14)

where DR is the number of states per unit energy. The last function in the integrand is
sharply peaked over a small range of energies around εr = E and if the other terms are
nearly constant for all states within this range, we can pull them out of the integral to
obtain

γ = DR(E) |τ (E)|2
∫

dεr
0+

(E − εr )2 + (0+)2

= 2π DR(E) |τ (E)|2 (8.4.15)

This result (Eq. (8.4.15)), often referred to as Fermi’s golden rule, is widely used for
many different problems. Indeed we could also write our earlier result (Eq. (8.4.11))
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for an atomic contact in the same form by noting that the density of states of the atomic
“reservoir” is given by

DR(E) → 0+/2π

(E − ε1)2 + (0+)2

As we mentioned earlier, this makes a very poor reservoir because the DOS is sharply
varying in energy and strongly dependent on 0+. By contrast, the reservoir with many
closely spaced energy levels has a constant DOS independent of 0+ if our level of
interest is coupled approximately equally to all of them, with each state broadened
by an amount 0+ that is well in excess of the level spacing. Typical contacts in the
real world are huge macroscopic objects with level spacings of picoelectron-volts or
less and even the slightest external perturbation can provide the required broadening.
In calculating the self-energy 	(E) analytically, it is common to take the limit as the
level spacing and the level broadening 0+ both tend to zero (the former is inforced by
letting the volume tend to infinity). But it is important to take this limit in the proper
order with the broadening always exceeding the spacing. In numerical calculations,
it is common to use finite-sized contacts to save computation time. Since finite-sized
contacts also have finite level spacings �ε, it is important to choose a value of the
“infinitesimal” 0+ that is in excess of �ε in order to turn them into well-behaved
reservoirs.

There is actually a more important property that is required of a good reservoir: it
must not only provide a constant escape rate γ but also a constant inflow rate γ f, f being
the Fermi function in the contact. This requires that external sources constantly maintain
the contact in local equilibrium, which is possible only if there is good communication
among the states in the contact. For example, if an electron enters the channel from
the contact it will leave a hole in the contact that is way below the electrochemical
potential µ as sketched in Fig. 8.4.4a. This creates a highly non-equilibrium situation
and the incoming electron at µ quickly loses energy to the solid and fills up the hole
through screening and “inelastic scattering processes” of the type to be discussed in
Chapter 10. This is why much of the Joule heating (I 2 R) occurs in the contact rather
than in the channel.
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Fig. 8.4.5 An ultrathin body silicon-on-insulator field effect transistor (FET). Possible planes for
drawing the line between H and 	 are shown (courtesy of M. S. Lundstrom).

For a contact to function like a good reservoir, it is important that this restoration
of equilibrium occurs fast enough that the contact can always be assumed to remain
in local equilibrium. This assumption may need to be revisited as we work more on
“nanocontacts,” especially if spin relaxation is involved.

Where do we draw the line between the Hamiltonian [H] and the self-energy [	]?
For practical reasons, we would like to make the region described by [H] as small as
possible, but we have to ensure that the region described by [	] can be assumed to
be in local equilibrium without significant loss of accuracy. The self-energy method
described in this chapter is accurate and useful even if a particular contact does not have
a smooth LDOS on a constant escape rate (see, for example, Klimeck et al. (1995)).
What is more important is that the scattering processes be strong enough to maintain
local equilibrium. For example, Fig. 8.4.5 shows an ultrathin nanotransistor with raised
source and drain regions designed to lower the resistance. If we draw the line between
H and 	 at A, A′ we incur significant error since the region to the left of A (or right
of A′) has the same cross-section as the channel and there is no reason to expect it to
be any more in equilibrium than the rest of the channel. It is thus necessary to move
the lines to B, B′, or perhaps even to C and beyond. For a discussion of some of these
issues, see Venugopal et al. (2004).

Let me end by noting that the role of contacts is really quite ubiquitous and goes
far beyond what these specific examples might suggest. When we calculate the opti-
cal absorption by a semiconductor, we implicitly assume the valence and conduction
bands to be the “source” and “drain” contacts that are maintained in local equilibrium
(see Exercise E.10.4) and there are examples of nanodevices where these “contacts” get
driven significantly off equilibrium. In modeling the interaction of electrons with lattice
vibrations or phonons, the latter are usually assumed to be maintained in equilibrium,
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but this “contact” too can get driven off equilibrium. A more subtle example is the
Overhauser effect where electronic spins drive nuclear spins significantly off equilib-
rium because the latter cannot relax easily due to their isolation from the surroundings
(see, for example, Salis et al. (2001)). The point is that quantum processes inevitably
involve all kinds of “contacts” which need not always be metallurgical like the ones in
Fig. 8.4.5 and it is not safe to assume that they will function like well-behaved reservoirs
without scrutinizing their structure and dynamics.

EXERCISES
E.8.1. Assume a 1D one-band effective mass model for a 1D lead as shown in Fig. E.8.1.

Ec + 2t0

− t0 − t0

a

0−1−2−3

Fig. E.8.1

Starting from Eq. (8.1.9) G R = [(E + i0+)I − HR]−1

Show that G R(0, 0) ≡ gR = −exp(ika) /t0.

E.8.2.
(a) In section 8.1 we have derived the self-energy for a one-dimensional lead using
elementary techniques:

	(E) = −t0 exp(ika) (8.1.7a)

where

E = Ec + 2t0(1 − cos ka) (8.1.5)

Eliminate ka from Eq. (8.1.7a) to obtain an expression for the self-energy explicitly in
terms of E:

	(E)/t0 = (x − 1) − i
√

2x − x2

where

x ≡ (E − Ec)/2t0, 0 ≤ x ≤ 2

The sign of the radical has been chosen so that the imaginary part of 	 is negative. For
values of x where the quantity under the radical sign is negative (this corresponds to
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energy values outside the allowed band) we should choose the sign such that 	 goes
to zero for large values of x:

	(E)/t0 = (x − 1) +
√

x2 − 2x, −∞ ≤ x ≤ 0

	(E)/t0 = (x − 1) −
√

x2 − 2x, 2 ≤ x ≤ +∞

Plot the self-energy over the range −1 ≤ x ≤ 3.
You should obtain a plot like this:

x

Σ/t0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

 --> 

 -
->

 

(b) It is instructive to re-derive Eq. (8.1.7a) using the more general formula given in
Eq. (8.1.15a). For a semi-infinite one-dimensional lead with N points spaced by a, the
eigenenergies are given by

εn = 2t0(1 − cos kna)

The corresponding normalized wavefunction is written as

ψn(xα) =
√

2/N sin (knxα) where kn = nπ/a and xα = αa

so that [τ ]in = [τ ]iα[τ ]αn = −t0
√

2/N sin kna

From Eq. (8.1.15a),

	(E) = 2

N

∑
n

t2
0 sin2 kna

E − εn + i0+

Convert the summation to an integral to show that

	(E) = 2

N

π/a∫
0

dkn L

π

t2
0 sin2 kna

E − εn + i0+ =
4t0∫

0

dεn

π

t0 sin kna

E − εn + i0+
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Ec + 2t0 Ec + 2t0 Ec + 2t0

+ Un+1+ Un−1 + Un

− t0 − t0 − t0

t0 ≡   2 /2mca
2

a

z

h

Fig. E.8.3

(c) It is possible to evaluate the self-energy analytically using contour integration tech-
niques, but somewhat difficult. What is relatively straightforward is to evaluate the
broadening function �(E) which is equal to twice the imaginary part of the self-energy.
Show that the broadening function is given by

�(E) = i(	 − 	+) = 2t0 sin ka, Ec ≤ E ≤ Ec + 4t0

where E = Ec + 2t0(1 − cos ka)

and is zero outside the range Ec ≤ E ≤ Ec + 4t0. Hint: You may find Eq. (8.2.10a)
useful.

(d) Show that 	(E) =
∞∫

−∞
dE ′ �(E ′)/2π

E−E ′+i0+

and hence

Re	(E) = P


 ∞∫

−∞
dE ′ �(E ′)/2π

E − E ′


 , Im	(E) = −�(E)/2

where P stands for principal part.

E.8.3. Consider a 1D wire with a potential U(x) that changes linearly from −0.1 eV
at one end to +0.1 eV at the other end (Fig. E.8.3) and model it using a one-band
Hamiltonian with a lattice of 50 points spaced by a = 2 Å and with the effective mass
mc equal to 0.25 times the free electron mass m.

Calculate the electron density n(z) in the wire assuming that it is in equilibrium with
an electrochemical potential µ = Ec + 0.25 eV and kBT = 0.025 eV , using (a) periodic
boundary conditions and (b) the self-energy method. Compare with Fig. 8.2.5. Calculate
the LDOS at the two ends of the box from the self-energy method and compare with
Fig. 8.2.6.

E.8.4. Consider the problem we discussed at the beginning of Section 8.4 with two

coupled atoms described by a (2 × 2) Hamiltonian, H =
[

ε τ
τ ∗ ε1

]
and use the same

parameters as in the text: ε = –0.25 eV, ε1 = +0.25 eV, τ = 0.5 eV and 0+ = 0.01 eV.
(a) Calculate the (2 × 2) spectral function and plot the LDOS on sites ‘1’ and ‘2’ as a

function of energy.
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(b) Calculate the LDOS on site ‘1’ by treating site ‘2’ as a self-energy and on site ‘2’
by treating site ‘1’ as a self-energy and compare with the results from part (a).

(c) The lower energy peak is larger than the higher energy peak for the LDOS on site
‘1’ (on site ‘2’ the relative sizes are reversed). Can you explain this in terms of the
eigenfunctions of [H]?

E.8.5. Consider a linear conductor with a repulsive potential U(x) = U0 δ(x). Calculate
the local density of states (LDOS) as a function of x at E = 0.005 eV and at E = 0.05 eV.
Use a one-band tight-binding model with 101 lattice sites spaced by a = 0.25 nm
assuming U0 = 5 eV nm and an effective mass of 0.25m. You should obtain plots like
this

(a) E = 0.01 eV (b) E = 0.1 eV
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The LDOS goes to zero right at the impurity, but oscillates around it with a period
determined by the electron wavelength corresponding to the energy E. Such oscillations
in the LDOS have been observed by scanning tunneling microscopy. The reader may
find it instructive to plot D(x, E) using a gray scale plot on the x–E plane similar to that
shown for example, in Fig. 9 of Lake and Datta (1992a).
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The reader may wish to review Section 1.6 before reading this chapter.

9.1 Overview

Since this chapter is rather long, let me start with a detailed overview, that can also
serve as a “summary.” In Chapter 1, I described a very simple model for current flow,
namely a single level ε which communicates with two contacts, labeled the source and
the drain. The strength of the coupling to the source (or the drain) was characterized by
the rate γ1/--h (or γ2/--h) at which an electron initially occupying the level would escape
into the source (or the drain).

I pointed out that the flow of current is due to the difference in “agenda” between the
source and the drain, each of which is in a state of local equilibrium, but maintained at
two different electrochemical potentials and hence with two distinct Fermi functions:

f1(E) ≡ f0(E − µ1) = 1

exp[(E − µ1)/kBT ] + 1
(9.1.1a)

f2(E) ≡ f0(E − µ2) = 1

exp[(E − µ2)/kBT ] + 1
(9.1.1b)

by the applied bias V: µ2 − µ1 = −qV . The source would like the number of electrons
occupying the level to be equal to f1(ε) while the drain would like to see this number
be f2(ε). The actual steady-state number of electrons N lies somewhere between the
two and the source keeps pumping in electrons while the drain keeps pulling them out,
each hoping to establish equilibrium with itself. In the process, a current flows in the
external circuit (Fig. 9.1.1).

My purpose in this chapter is essentially to carry out a generalized version of this
treatment applicable to an arbitrary multi-level device (Fig. 9.1.2) whose energy levels
and coupling are described by matrices rather than ordinary numbers:

ε → [H ] Hamiltonian matrix

γ1,2 → [�1,2] Broadening matrices �1,2 = i[	1,2 − 	+
1,2]

217
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µ2

 µ1

Drain Source

γ2D(E)f2(E)γ1D(E)f1(E)

I

V

I

γ1n(E) γ2n(E)

Fig. 9.1.1 Flux of electrons into and out of a channel: independent level model, see
Eqs. (1.6.4)–(1.6.6).

Trace [Γ1Gn]/2π Trace [Γ2Gn]/2π

Trace [Γ1A]f1/2π Trace [Γ2A]f2/2π

µ1

µ2

DrainSource 

I

V 

I

[ H ]

[Σ1] [Σ2]

Fig. 9.1.2 Inflow and outflow for an arbitrary multi-level device whose energy levels are
described by a Hamiltonian matrix [H] and whose coupling to the source and drain contacts is
described by self-energy matrices [	1(E)] and [	2(E)] respectively.

In Chapter 8 we saw that connecting a device to a reservoir broadens its energy levels
and it is convenient to talk in terms of a continuous independent energy variable E,
rather than a discrete set of eigenstates. The density matrix can be written in the form
(see Eq. (8.2.13))

[ρ] =
+∞∫

−∞
(dE/2π )[Gn(E)] (9.1.2a)

where, in equilibrium,

[Gn(E)]eq = [A(E)] f0(E − µ) (9.1.2b)
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Just as the spectral function [A] represents the matrix version of the density of states per
unit energy, the correlation function [Gn] is the matrix version of the electron density
per unit energy.

Non-equilibrium density matrix: In Section 9.2 the first result we will prove is
that when the device is connected to two contacts with two distinct Fermi functions
f1(E) and f2(E), the density matrix is given by Eq. (9.1.2a) with (dropping the argument
E for clarity)

[Gn] = [A1] f1 + [A2] f2 (9.1.3)

where

A1 = G�1G+ and A2 = G�2G+ (9.1.4)

G = [EI − H − 	1 − 	2]−1 (9.1.5)

suggesting that a fraction [A1] of the spectral function remains in equilibrium with the
source Fermi function f1, while another fraction [A2] remains in equilibrium with the
drain Fermi function f2. We will show that these two partial spectral functions indeed
add up to give the total spectral function [A] that we discussed in Chapter 8:

[A] ≡ i[G − G+] = [A1] + [A2] (9.1.6)

Current: Next (in Section 9.3) we will show that the current Ii at terminal i can be
written in the form

Ii = (−q/h)

+∞∫
−∞

dE Ĩi (E) (9.1.7a)

with

Ĩi = Trace[�i A] f1 − Trace[�i G
n] (9.1.7b)

representing a dimensionless current per unit energy. This leads to the picture shown in
Fig. 9.1.2 which can be viewed as the quantum version of our elementary picture from
Chapter 1 (Fig. 9.1.1).

One-level model: In Chapter 1, we went through an example with just one level so
that the electron density and current could all be calculated from a rate equation with a
simple model for broadening. I then indicated that in general we need a matrix version
of this “scalar model” and that is what the rest of the book is about (see Fig. 1.6.5).

It is instructive to check that the full “matrix model” we have stated above (and
will derive in this chapter) reduces to our old results (Eqs. (1.6.4)–(1.6.6)) when we
specialize to a one-level system so that all the matrices reduce to pure numbers.
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From Eq. (9.1.5), G(E) = [E − ε + (i�/2)]−1

From Eq. (9.1.4), A1(E) = �1

(E − ε)2 + (�/2)2
, A2(E) = �2

(E − ε)2 + (�/2)2

From Eq. (9.1.6), A(E) = �

(E − ε)2 + (�/2)2

From Eq. (9.1.3), Gn(E) = A(E)

(
�1

�
f1(E) + �2

�
f2(E)

)
which can be compared with Eq. (1.6.4). Similarly, from Eqs. (9.1.7) the current at the
two terminals is given by (cf. Eqs. (1.6.5a, b)):

I1 = q

h

+∞∫
−∞

dE �1[A(E) f1(E) − Gn(E)]

I2 = q

h

+∞∫
−∞

dE �2[A(E) f2(E) − Gn(E)]

Transmission: Equation (9.1.7) can be combined with (9.1.3) and (9.1.6) to write

I 1 = −I 2 = T (E)( f1(E) − f2(E))

where

T (E) ≡ Trace[�1 A2] = Trace[�2 A1] (9.1.8)

The current I in the external circuit is given by

I = (q/h)

+∞∫
−∞

dE T (E)( f1(E) − f2(E)) (9.1.9)

The quantity T (E) appearing in the current equation (Eq. (9.1.9)) is called the trans-
mission function, which tells us the rate at which electrons transmit from the source to
the drain contacts by propagating through the device. Knowing the device Hamiltonian
[H] and its coupling to the contacts described by the self-energy matrices 	1,2, we can
calculate the current either from Eqs. (9.1.7) or from Eq. (9.1.9). This procedure can
be used to analyze any device as long as the evolution of electrons through the device
is coherent. Let me explain what that means.

The propagation of electrons is said to be coherent if it does not suffer phase-breaking
scattering processes that cause a change in the state of an external object. For example,
if an electron were to be deflected from a rigid (that is unchangeable) defect in the
lattice, the propagation would still be considered coherent. The effect could be incor-
porated through an appropriate defect potential in the Hamiltonian [H] and we could
still calculate the current from Fig. 9.1.2. But, if the electron transferred some energy
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Fig. 9.1.3 The transmission formalism assumes the device to be connected via ideal multi-moded
quantum wires to the contacts and the transmission function is related to the S-matrix between
these leads.

to the atomic lattice causing it to start vibrating that would constitute a phase-breaking
process and the effect cannot be included in [H]. How it can be included is the subject
of Chapter 10.

I should mention here that coherent transport is commonly treated using the trans-
mission formalism which starts with the assumption that the device is connected to the
contacts by two ideal leads which can be viewed as multi-moded quantum wires so that
one can calculate an S-matrix for the device (Fig. 9.1.3), somewhat like a microwave
waveguide. The transmission matrix s21 (or s12) is of size M × N (or N × M) if lead 1
has N modes and lead 2 has M modes and the transmission function is obtained from its
trace: T (E) = Trace[s12s+

12] = Trace[s21s+
21]. This approach is widely used and seems

quite appealing especially to those familiar with the concept of S-matrices in microwave
waveguides.

Transmission from Green’s function: For coherent transport, one can calculate the
transmission from the Green’s function method, using the relation

T (E) ≡ Trace[�1G�2G+] = Trace[�2G�1G+] (9.1.10)

obtained by combining Eq. (9.1.8) with (9.1.4). In Sections 9.2 and 9.3 we will derive
all the equations (Eq. (9.1.2a)–(9.1.7a)) given in this section. But for the moment let
me just try to justify the expression for the transmission (Eq. (9.1.10)) using a simple
example. Consider now a simple 1D wire modeled with a discrete lattice (Fig. 9.1.4).
We wish to calculate the transmission coefficient

T (E) = (v2/v1)|t |2 (9.1.11)

where the ratio of velocities (v2/v1) is included because the transmission is equal to
the ratio of the transmitted to the incident current, and the current is proportional to the
velocity times the probability |ψ |2.

To calculate the transmission from the Green’s function approach, we start from the
Schrödinger equation [EI − H ]{ψ} = {0}, describing the entire infinite system and use
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the same approach described in Section 8.1 to eliminate the semi-infinite leads

[EI − H − 	1 − 	2]{ψ} = {S} → {ψ} = [G]{S} (9.1.12)

where [G] is given by Eq. (9.1.5). 	1 and 	2 are matrices that represent the effects of
the two leads: each has only one non-zero element (see Eq. (8.1.7a)):

	1(1, 1) = −t0 exp(ik1a) 	2(N , N ) = −t0 exp(ik2a)

corresponding to the end point of the channel (1 or N) where the lead is connected. The
source term {S} is a column vector with just one non-zero element corresponding to
the end point (1) on which the electron wave is incident (see Eq. (8.1.7b)):

S(1) = i2t0 sin k1a = i(--hv1/a)

Note that in general for the same energy E, the k-values (and hence the velocities) can
be different at the two ends of the lattice since the potential energy U is different:

E = Ec + U1 + 2t0 cos k1a = Ec + UN + 2t0 cos k2a

From Eq. (9.1.12) we can write t = ψ(N ) = G(N , 1) S(1) so that from Eq. (9.1.11)

T (E) = (--hv1/a)(--hv2/a) |G(1, N )|2

which is exactly what we get from the general expression in Eq. (9.1.10).
This simple example is designed to illustrate the relation between the Green’s func-

tion and transmission points of view. I believe the advantages of the Green’s function
formulation are threefold.
(1) The generality of the derivation shows that the basic results apply to arbitrarily

shaped channels described by [H] with arbitrarily shaped contacts described by
[	1], [	2]. This partitioning of the channels from the contacts is very useful when
dealing with more complicated structures.

(2) The Green’s function approach allows us to calculate the density matrix (hence the
electron density) as well. This can be done within the transmission formalism, but
less straightforwardly (Cahay et al., 1987).
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(3) The Green’s function approach can handle incoherent transport with phase-breaking
scattering, as we will see in Chapter 10. Phase-breaking processes can only be
included phenomenologically within the transmission formalism (Büttiker, 1988).

We will derive the expressions for the density matrix, Eqs. (9.1.3)–(9.1.6), in Section 9.2,
the expression for the current, Eq. (9.1.7), in Section 9.3, discuss the relation with the
transmission formalism in Section 9.4, and finally present a few illustrative examples in
Section 9.5. In short, Sections 9.2–9.4 derive the expressions stated in this section, while
Section 9.5 applies them. The reader is encouraged to take a look ahead at Section 9.5,
as it might help motivate him/her to suffer through the intervening sections.

9.2 Density matrix

In this section we will derive the results stated in Section 9.1 for the non-equilibrium
density matrix (Eqs. (9.1.3)–(9.1.6)) for a channel connected to two contacts. In the
next section we will derive the current expressions (Eqs. (9.1.7)–(9.1.9)).

Channel with one contact: I would like to start by revisiting the problem of a channel
connected to one contact and clearing up a conceptual issue, before we take on the real
problem with two contacts. In Section 8.1 we started from a Schrödinger equation for
the composite contact–channel system(

EI R − HR + iη −τ+

−τ EI − H

) {
�R + χ

ψ

}
=

{
SR

0

}
(9.2.1)

and showed that the scattered waves {ψ} and {χ} can be viewed as arising from the
“spilling over” of the wavefunction {�R} in the isolated contact (Fig. 9.2.1). Using
straightforward matrix algebra we obtained

{χ} = G Rτ+{ψ} (9.2.2)

where

G R ≡ [EI R − HR + iη]−1 (9.2.3)

{ψ} = [G]{S} (9.2.4)

G ≡ [EI − H − 	]−1 (9.2.5)

	 ≡ τG Rτ+ (9.2.6)

{S} = τ {�R} (9.2.7)

Since there is only one contact this is really an equilibrium problem and the density
matrix is obtained simply by filling up the spectral function

A(E) = i[G − G+] (9.2.8)
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Fig. 9.2.1

according to the Fermi function as stated in Eqs. (9.1.2a, b). What I would like to
do now is to obtain this result in a completely different way. I will assume that the
source waves {�R} from the contact are filled according to the Fermi function and the
channel itself is filled simply by the spilling over of these wavefunctions. I will show
that the resulting density matrix in the channel is identical to what we obtained earlier.
Once we are clear about the approach we will extend it to the real problem with two
contacts.

Before we connect the contact to the device, the electrons will occupy the contact
eigenstates α according to its Fermi function, so that we can write down the density
matrix for the contact as

ρR(�r , �r ′) =
∑

α

φα(�r ) f0(εα − µ)φ∗
α(�r ′)

or in matrix notation as

[ρR] =
∑

α

f0(εα − µ){φα}{φα}+ (9.2.9)

Now we wish to calculate the device density matrix by calculating the response of the
device to the excitation τ {�} from the contact. We can write the source term due to
each contact eigenstate α as {Sα} = τ {φα}, find the resulting device wavefunction from
Eqs. (9.2.4) and (9.2.7) {ψα} = Gτ {φα}, and then obtain the device density matrix by
adding up the individual components weighted by the appropriate Fermi factors for the
original contact eigenstate α:

[ρ] =
∑

α

f0(εα − µ){ψα}{ψα}+

=
∫

dE f0(E − µ)
∑

α

δ(E − εα){ψα}{ψα}+

=
∫

dE f0(E − µ)Gτ

[∑
α

δ(E − εα){φα}{φα}+
]

τ+G+

=
∫

dE

2π
f0(E − µ)Gτ ARτ+G+ (9.2.10)



225 9.2 Density matrix

making use of the expression for the spectral function in the contact Eq. (8.2.3):

AR(E) =
∑

α

δ(E − εα){φα}{φα}+ (9.2.11)

From Eq. (9.2.6),

� = i[	 − 	+] = τ ARτ+ (9.2.12)

so that from Eq. (9.2.10) we can write

[Gn] = [G�G+] f0(E − µ) (9.2.13)

where we have made use of Eq. (9.1.2a). To show that this is the same as our earlier
result (Eqs. (9.1.2a, b)), we need the following important identity. If

[G] = [EI − H − 	]−1 and � = i[	 − 	+]

then

A ≡ i[G − G+] = G�G+ = G+�G (9.2.14)

This is shown by writing (G+)−1 − G−1 = 	 − 	+ = −i�, then pre-multiplying with
G and post-multiplying with G+ to obtain

G − G+ = −iG�G+ → A = G�G+

Alternatively if we pre-multiply with G+ and post-multiply with G we obtain

G − G+ = −iG+�G → A = G+�G

I have used this simple one-contact problem to illustrate the important physical
principle that the different eigenstates are uncorrelated and so we should calculate
their contributions to the density matrix independently and then add them up.

This is a little bit like Young’s two-slit experiment shown below. If the two slits
are illuminated coherently then the intensity on the screen will show an interference
pattern.

S
C
R
E
E
N

But if the slits are illuminated incoherently then the intensity on the screen is
simply the sum of the intensities we would get from each slit independently. Each
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Fig. 9.2.2 A channel connected to two contacts.

eigenstate α is like a “slit” that “illuminates” the device and the important point is that
the “slits” have no phase coherence. That is why we calculate the device density matrix
for each “slit” α independently and add them up.

Now that we have been through this exercise once, it is convenient to devise the
following rule for dealing with the contact and channel wavefunctions

{�R}{�+
R} ⇒

∫
(dE/2π ) f0(E − µ)[AR(E)] (9.2.15a)

{ψ}{ψ+} ⇒
∫

(dE/2π )[Gn(E)] (9.2.15b)

reflecting the fact that the electrons in the contact are distributed according to the Fermi
function f0(E−µ) in a continuous distribution of eigenstates described by the spectral
function AR(E). This rule can be used to shorten the algebra considerably. For example,
to evaluate the density matrix we first write down the result for a single eigenstate

{ψ} = Gτ {�R} → {ψ}{ψ}+ = Gτ {�R}{�R}+τ+G+

and then apply Eq. (9.2.11) to obtain [Gn] = [Gτ ARτ+G+] f0(E − µ), which reduces
to Eq. (9.2.13) making use of Eq. (9.2.12).

Channel with two contacts: Now we are ready to tackle the actual problem with
two contacts. We assume that before connecting to the channel, the electrons in the
source and the drain contact have wavefunctions {�1}, {�2} obeying the “Schrödinger”
equations for the isolated contacts (see Eq. (8.1.8b)):

[EI − H1 + iη]{�1} = {S1} and [EI − H2 + iη]{�2} = {S2} (9.2.16)

where [H1], [H2] are the Hamiltonians for contacts 1 and 2 respectively and we have
added a small positive infinitesimal times an identity matrix, [η] = 0+[I ], to introduce
dissipation as before. When we couple the device to the contacts as shown in Fig. 9.2.2,
these electronic states from the contacts “spill over” giving rise to a wavefunction {ψ}



227 9.2 Density matrix

inside the device which in turn excites scattered waves {χ1} and {χ2} in the source and
drain respectively.

The overall wavefunction will satisfy the composite Schrödinger equation for the
composite contact-1–device–contact-2 system which we can write in three blocks
(cf. Eq. (8.1.8b)):
EI − H1 + iη −τ+

1 0
−τ1 EI − H −τ2

0 −τ+
2 EI − H2 + iη







�1 + χ1

ψ

�2 + χ2


 =




S1

0
S2


 (9.2.17)

where [H] is the channel Hamiltonian. Using straightforward matrix algebra we obtain
from the first and last equations

{χ1} = G1τ
+
1 {ψ} and {χ2} = G2τ

+
2 {ψ} (9.2.18)

where

G1 = [EI − H1 + iη]−1 and G2 = [EI − H2 + iη]−1 (9.2.19)

are the Green’s functions for the isolated reservoirs. Using Eqs. (9.2.18) to eliminate
{χ1}, {χ2} from the middle equation in Eq. (9.2.17) we obtain

[EI − H − 	1 − 	2]{ψ} = {S} (9.2.20)

where

	1 = τ1G1τ
+
1 and 	2 = τ2G2τ

+
2 (9.2.21)

are the self-energy matrices that we discussed in Chapter 8. The corresponding broad-
ening matrices (Eq. (9.2.12)) are given by

�1 = τ1 A1τ
+
1 and �2 = τ2 A2τ

+
2 (9.2.22)

where A1 = i[G1 − G+
1 ] and A2 = i[G2 − G+

2 ] are the spectral functions for the
isolated contacts 1 and 2 respectively. Also,

{S} ≡ τ1{�1} + τ2{�2} (9.2.23)

is the sum of the source terms τ1�1 (from the source) and τ2�2 (from the drain) as
shown in Fig. 9.2.3.

To evaluate the density matrix, we define the channel Green’s function

G ≡ [EI − H − 	1 − 	2]−1 (9.2.24)

and use it to express the channel wavefunction in terms of the source terms from
Eq. (9.2.20):

{ψ} = G{S} → {ψ}{ψ}+ = G{S}{S}+G+ (9.2.25)
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[H + Σ1 + Σ2]

{ψ}

τ2{Φ2}τ1{Φ1}

{χ2}{χ1}

Fig. 9.2.3 Channel excited by τ 1�1 (from the source) and τ 2�2 (from the drain). The channel
response is decribed by Eq. (9.2.20) and it in turn generates {χ 1}, {χ2} in the contacts (see
Eq. (9.2.18)).

Note that the cross-terms in the source

SS+ = τ1�1�
+
1 τ+

1 + τ2�2�
+
2 τ+

2

+ τ1�1�
+
2 τ+

2 + τ2�2�
+
1 τ+

1

Cross-terms = 0

are zero since �1 and �2 are the wavefunctions (before connecting to the channel) in
the source and drain contacts which are physically disjoint and unconnected. The direct
terms are evaluated using the basic principle (see Eqs. (9.2.15a)) that we formulated
earlier with the one-contact problem:

{�1}{�+
1 } ⇒

∫
(dE/2π ) f1(E)[A1(E)] (9.2.26a)

{�2}{�+
2 } ⇒

∫
(dE/2π ) f2(E)[A2(E)] (9.2.26b)

to write down the density matrix from {ψ}{ψ}+ = G{S}{S}+G+

ρ =
∫

(dE/2π ){[Gτ1 A1τ
+
1 G+] f1 + [Gτ2 A2τ

+
2 G+] f2}

Making use of Eq. (9.2.22) we can simplify this expression to write

Gn = G	inG+ (9.2.27)

and

[	in] = [�1] f1 + [�2] f2 (9.2.28)

noting that [ρ] = ∫
(dE/2π )[Gn] as defined in Eq. (9.1.2a). Just as Gn is obtained from

{ψ}{ψ}+, 	in is obtained from {S}{S}+. One could thus view Eq. (9.2.27) as a relation
between the “electron density” in the device created by the source term {S} representing
the spill-over of electrons from the contacts.
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Partial spectral function: Substituting Eq. (9.2.28) into Eq. (2.9.27) we can write

[Gn] = [A1] f1 + [A2] f2 (9.2.29)

where

A1 = G�1G+ and A2 = G�2G+

Comparing this with the equilibrium result (see Eq. (9.1.2b)), [Gn] = [A] f0, it seems
natural to think of the total spectral function [A(E)] as consisting of two parts: [A1(E)]
arising from the spill-over (or propagation) of states in the left contact and [A2(E)]
arising from the spill-over of states in the right contact. The former is filled according
to the left Fermi function f1(E) while the latter is filled according to the right Fermi
function f2(E). To show that the two partial spectra indeed add up to give the correct total
spectral function, A = A1 + A2, we note from Eq. (9.2.14) that since the self-energy 	

has two parts 	1 and 	2 coming from two contacts, A = G[�1 + �2]G+ = A1 + A2

as stated in Eq. (9.1.6).

Exclusion principle? An important conceptual point before we move on. Our approach
is to use the Schrödinger equation to calculate the evolution of a specific eigenstate
�α from one of the contacts and then superpose the results from distinct eigenstates
to obtain the basic rule stated in Eqs. (9.2.15) or Eq. (9.2.26). It may appear that by
superposing all these individual fluxes we are ignoring the Pauli exclusion principle.
Wouldn’t the presence of electrons evolving out of one eigenstate block the flux evolving
out of another eigenstate? The answer is no, as long as the evolution of the electrons
is coherent. This is easiest to prove in the time domain, by considering two electrons
that originate in distinct eigenstates {�1} and {�2}. Initially there is no question of
one blocking the other since they are orthogonal: {�1}+{�2} = 0. At later times their
wavefunctions can be written as

{ψ1(t)} = exp[−iHt/--h]{�1}
{ψ2(t)} = exp[−iHt/--h]{�2}

if both states evolve coherently according to the Schrödinger equation:

i--hd{ψ}/dt = [H ]{ψ}

It is straightforward to show that the overlap between any two states does not change as
a result of this evolution: {ψ1(t)}+{ψ2(t)} = {�1}+{�2}. Hence, wavefunctions origi-
nating from orthogonal states remain orthogonal at all times and never “Pauli block”
each other. Note, however, that this argument cannot be used when phase-breaking
processes (briefly explained in the introduction to this chapter) are involved since the
evolution of electrons cannot be described by a one-particle Schrödinger equation.
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9.3 Inflow/outflow

Now that we have derived the results for the non-equilibrium density matrix (see
Eqs. (9.1.3)–(9.1.6)), let us discuss the current flow at the terminals (Eqs. (9.1.7)–
(9.1.9)). As before let us start with the “one-contact” problem shown in Fig. 9.2.1.

Channel with one contact: Consider again the problem of a channel connected to one
contact described by:

E

{
ψ

�

}
=

[
H τ

τ+ HR − iη

] {
ψ

�

}

which is the same as Eq. (9.2.1) with {�} ≡ {�R + χ} and {SR} dropped for clarity.
How can we evaluate the current flowing between the channel and the contact? Just as
we did in Section 6.4 (when discussing the velocity of a band electron), we need to
look at the time-dependent version of this equation

i--h
d

dt

{
ψ

�

}
=

[
H τ

τ+ HR − iη

] {
ψ

�

}

and obtain an expression for the time rate of change in the probability density inside
the channel, which is given by

Trace[ψψ+] = Trace[ψ+ψ] = ψ+ψ

(note that ψ+ψ is just a number and so it does not matter if we take the trace or not):

I ≡ d

dt
ψ+ψ = Trace[ψ+τ� − �+τ+ψ]

i--h
(9.3.1)

Noting that {�} ≡ {�R + χ}, we can divide this net current I conceptually into an
inflow, proportional to the “incident” wave {�R}, and an outflow proportional to the
“scattered” wave {χ}:

I = Trace[ψ+τ�R − �+
Rτ+ψ]

i--h︸ ︷︷ ︸
Inflow

− Trace[χ+τ+ψ − ψ+τχ ]

i--h︸ ︷︷ ︸
Outflow

(9.3.2)

Making use of Eqs. (9.2.4) and (9.2.7) we can write the inflow as

Inflow = Trace[S+G+S − S+GS]/i--h = Trace[SS+ A]/--h

since i[G − G+] [A]. To obtain the total inflow we need to sum the inflows due to each
contact eigenstate α, all of which as we have seen are taken care of by the replacement
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(see Eq. (9.2.15a))

{�R}{�R
+} ⇒

∫
dE

2π
f0(E − µ)[AR(E)]

Since S = τ�R , this leads to

SS+ ⇒
∫

dE

2π
f0(E − µ)τ ARτ+ =

∫
dE

2π
f0(E − µ)[�]

so that the inflow term becomes

Inflow = 1
--h

∫
dE

2π
f0(E − µ) Trace[�A] (9.3.3a)

Similarly, we make use of Eqs. (9.2.2) and (9.2.12) to write the outflow term as

Outflow = Trace[ψ+τG+
Rτ+ψ − ψ+τG Rτ+ψ]/i--h = Trace[ψψ+�]/--h

On summing over all the eigenstates, ψψ+ ⇒ ∫
dE Gn/2π , so that

Outflow = 1
--h

∫
dE

2π
Trace[�Gn] (9.3.3b)

It is easy to see that the inflow and outflow are equal at equilibrium, since Gn = Af0
(see Eq. (9.1.2b)).

Channel with two contacts: Now we are ready to calculate the inflow and outflow for
the channel with two contacts (see Fig. 9.3.1). We consider one of the interfaces, say
the one with the source contact, and write the inflow as (cf. Eq. (9.3.2))

I1 = Trace[ψ+τ1�1 − �+
1 τ+

1 ψ]

i--h︸ ︷︷ ︸
Inflow

− Trace[χ+
1 τ+

1 ψ − ψ+τ1χ1]

i--h︸ ︷︷ ︸
Outflow

Making use of the relations ψ = GS (with S and G defined in Eqs. (9.2.23) and (9.2.24))
and {S1} ≡ τ1{�1}, we can write

Inflow = Trace[S+G+S1 − S+
1 GS]/i--h = Trace[S1S+

1 A]/--h

since S = S1 + S2 and S+
1 S2 = S+

2 S1 = 0.
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Next we sum the inflow due to each contact eigenstate α, all of which is taken care
of by the replacement (see Eq. (9.2.26a))

{�1}{�+
1 } ⇒

∫
dE

2π
f1(E)[A1(E)]

leading to {S1}{S+
1 } = [τ1�1�

+
1 τ+

1 ]

⇒
∫

dE

2π
[τ1 A1τ

+
1 ] f1(E) =

∫
dE

2π
[�1] f1(E)

so that

Inflow = 1
--h

∫
dE

2π
f1(E) Trace[�1 A] (9.3.4a)

Similarly we make use of Eqs. (9.2.18) and (9.2.22) to write the outflow term as

Outflow = Trace[ψ+τ1G+
1 τ+

1 ψ − ψ+τ1G1τ
+
1 ψ]/i--h = Trace[ψψ+�1]/--h

On summing over all the eigenstates, {ψ}{ψ+} ⇒ ∫
(dE/2π )[Gn], so that

Outflow = (1/--h)
∫

dE

2π
Trace[�1Gn] (9.3.4b)

The net current Ii at terminal i is given by the difference between the inflow and the
outflow (multiplied by the charge −q of an electron) as stated in Eq. (9.1.7a)

Ii = (−q/--h)

+∞∫
−∞

dE

2π
Ĩi (E)

with

Ĩi = Trace[�i A] fi − Trace[�i G
n] (9.3.5)

and illustrated in Fig. 9.1.2.

9.4 Transmission

In the last section we obtained expressions for the current at each of the contacts,
which can be expressed as the difference between an inflow and an outflow. In this
section we will express the current in a slightly different form that gives a different
perspective to the problem of current flow and helps establish a connection with the
transmission formalism widely used in the literature. We start by combining Eq. (9.1.7b)
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(b) I(D → S) = T(E) f2(E) 

DrainSource Channel

I S → D( ) = T (E) f1 E( )

DrainSource Channel

(a) 

Fig. 9.4.1 The net current through the device (Eq. (9.4.1)) can be viewed as the difference
between two counterpropagating fluxes from electrons: one from the source to the drain f2 = 0 (a)
and the other from the drain to the source f1 = 0 (b).

with Eqs. (9.1.5) and (9.1.6) to write

I 1 = T 12(E)[ f1(E) − f2(E)] where T 12(E) ≡ Trace[�1 A2]

I 2 = T 21(E)[ f2(E) − f1(E)] where T 21(E) ≡ Trace[�2 A1]

We expect the currents at the two terminals to be equal and opposite and this is ensured
if Trace[�1 A2] = Trace[�2 A1]. To show that they are indeed equal, we make use of
Eq. (9.2.14) to show that

Trace[�1 A] = Trace[�1G�G+] = Trace[�G+�1G] = Trace[�A1]

Subtracting Trace[�1 A1] from both sides gives the desired result that Trace[�1A2] =
Trace[�2A1] (noting that � = �1 + �2 and A = A1 + A2). This allows us to write the
current as (noting that 2π --h = h)

I = (q/h)

+∞∫
−∞

dE T (E)[ f1(E) − f2(E)] (9.4.1)

where

T (E) ≡ Trace[�1 A2] = Trace[�2 A1]

= Trace[�1G�2G+] = Trace[�2G�1G+] (9.4.2)

is called the transmission function. Physically we can view the current in Eq. (9.4.1) as
the difference between two counterpropagating fluxes, one from the source to the drain
and the other from the drain to the source as sketched in Fig. 9.4.1. One could view
the device as a “semi-permeable membrane” that separates two reservoirs of electrons
(source and drain) and the transmission function T (E) as a measure of the permeability
of this membrane to electrons with energy E. We will show that the same function T (E)
will govern both fluxes as long as transport is coherent.
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Fig. 9.4.2 In the transmission formalism, the channel is assumed to be connected to the contacts
by two uniform leads that can be viewed as quantum wires with multiple subbands (see Chapter 6)
having well-defined E–k relationships as shown. This allows us to define an S-matrix for the device
analogous to a microwave waveguide.

Transmission formalism: In the transmission formalism (sometimes referred to as the
Landauer approach) the channel is assumed to be connected to the contacts by two
uniform leads that can be viewed as quantum wires with multiple modes or subbands
(see Chapter 6) having well-defined E–k relationships as sketched in Fig. 9.4.2. This
allows us to define an S-matrix for the device analogous to a microwave waveguide
where the element tnm of the t-matrix tells us the amplitude for an electron incident in
mode m in lead 1 to transmit to a mode n in lead 2. It can then be shown that the current
is given by Eq. (9.4.1) with the transmission function given by

T (E) =
∑

m

∑
n

|tnm|2 = Trace[t t+] (9.4.3)

This viewpoint, which is very popular, has the advantage of being based on relatively
elementary concepts and also allows one to calculate the transmission function by
solving a scattering problem. In the next section we will show with simple examples
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that this approach yields the same result as that obtained from T = Trace[�2G�1G+]
applied to devices with uniform leads.

Landauer formula: Landauer pioneered the use of the scattering theory of transport
as a conceptual framework for clarifying the meaning of electrical conductance and
stressed its fundamental connection to the transmission function: “Conductance is trans-
mission.” This basic relation can be seen starting from Eq. (9.4.1) (making use of Eqs.
(9.1.1))

I = (q/h)

+∞∫
−∞

dE T (E)[ f0 (E − µ1) − f0 (E − µ2)]

and noting that the current is zero at equilibrium since µ1 = µ2. A small bias voltage
V changes each of the functions T , µ1, and µ2, and the resulting current can be written
to first order as (δ denotes a small change)

I ≈ (q/h)

+∞∫
−∞

dE δT (E)[ f0(E − µ1) − f0(E − µ2)]

+ (q/h)

+∞∫
−∞

dE T (E) δ[ f0 (E − µ1) − f0 (E − µ2)]

The first term is zero and the second can be written as

I ≈ (q2V/h)

+∞∫
−∞

dE T (E) (−∂ f0(E)/∂ E)E=µ

so that the conductance is given by

G = (q2/h)T0 where T0 ≡
+∞∫

−∞
dE T (E) FT(E − µ) (9.4.4)

and FT is the thermal broadening function discussed in Chapter 7, which is peaked
sharply around E = µ with a width proportional to kBT (see Fig. 7.3.4). The conduc-
tance is thus proportional to the transmission function averaged over an energy range
of a few kBT around the equilibrium electrochemical potential µ, just as the quantum
capacitance is proportional to the averaged density of states (see Eq. (7.3.8)).

The maximum value of the transmission function (and hence the conductance) is
obtained if each of the M subbands or modes in one lead transmits perfectly to the
other lead (see Fig. 9.4.2). The matrix [tt+] is then a diagonal matrix of size (M × M)
with ones along the diagonal, so that the transmission is equal to M. This suggests
that the maximum transmission is equal to the number of modes M in the leads. But



236 Coherent transport

 N modes N modes N modes 

(a)

(b)

M  modes M  modes

N  modes 

Fig. 9.4.3

Channel
V 

µ1 µ2

µ3 µ4

Fig. 9.4.4 Conductance measurements are commonly carried out in a four-probe configuration
that can be analyzed using the Büttiker equations.

what happens if the device is narrower than the lead and has only N modes, N < M
(Fig. 9.4.3a)?

It can be argued that such a structure could not have a transmission any greater
than a structure with the leads the same size as the channel (Fig. 9.4.3b) since in
either case the electrons have to transmit through the narrow device region (assuming
that the device is not so short as to allow direct tunneling). Since this latter structure
has a maximum transmission of N that must be true of the first structure as well and
detailed calculations do indeed show this to be the case. In general we can expect that
the maximum transmission is equal to the number of modes in the narrowest segment.
Earlier, in Chapter 6, we argued that the maximum conductance of a wire with N modes
is equal to (q2/h)N based on the maximum current it could possibly carry.

Büttiker equations: Conductance measurements are often performed using a four-
probe structure (Fig. 9.4.4) and their interpretation in small structures was initially
unclear till Büttiker came up with an elegant idea (Büttiker, 1988). He suggested that
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the Landauer formula

G = (q2/h)T̃ → I = (q/h)T̃ [µ1 − µ2]

be extended to structures with multiple terminals by writing the current Ii at the ith
terminal as

Ii = (q/h)
∑

j

T̃i j [µi − µ j ] (9.4.5)

where T̃i j is the average transmission from terminal j to i. We know the electrochemical
potentials µ at the current terminals (1 and 2) but we do not know them at the voltage
terminals, which float to a suitable potential so as to make the current zero. How do
we calculate the currents from Eq. (9.4.5) since we do not know all the potentials? The
point is that of the eight variables (four potentials and four currents), if we know any
four, we can calculate the other four with simple matrix algebra. Actually, there are
six independent variables. We can always set one of the potentials to zero, since only
potential differences give rise to currents. Also, Kirchhoff’s law requires all the currents
to add up to zero, so that knowing any three currents we can figure out the fourth. So,
it is convenient to set the potential at one terminal (say terminal 2) equal to zero and
write Eq. (9.4.5) in the form of a (3 × 3) matrix equation:




I1

I3

I4


 = q

h


T̃12 + T̃13 + T̃14 −T̃13 −T̃14

−T̃31 T̃31 + T̃32 + T̃34 −T̃34

−T̃41 −T̃43 T̃41 + T̃42 + T̃43







µ1

µ3

µ4




Knowing µ1, I3 = 0, I4 = 0, we can calculate I1, µ3, µ4 and hence the four-probe
conductance:

Gfour-probe = (µ3 − µ4)/q I1

We can visualize the Büttiker equations with a simple circuit model if the transmission
coefficients are reciprocal, that is, if T̃i j = T̃ ji . These equations are then identical to
Kirchhoff’s law applied to a network of conductors Gi j ∝ T̃i j = T̃ ji connecting each
pair of contacts i and j (see Fig. 9.4.5). However, this picture cannot be used if the
transmission coefficients are non-reciprocal: T̃i j �= T̃i j , as they are in Hall effect mea-
surements where a magnetic field is present, some of the most notable applications of
the Büttiker equations, Eq. (9.4.5), are to the interpretation of such measurements.

Büttiker probes: We mentioned earlier that the scattering theory of transport can only
be used if the electrons transmit coherently through the device so that an S-matrix can
be defined. But floating probes effectively extract electrons from the device and reinject
them after phase randomization, thus effectively acting as phase-breaking scatterers.
This is a seminal observation due to Büttiker that provides a simple phenomenological
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µ3
G24

G23

G34 µ4

µ2
µ1

G13

G14

G12

Fig. 9.4.5 The Büttiker equations can be visualized in terms of a conductor network if the
transmission between terminals is reciprocal.

technique for including the effects of phase-breaking processes in the calculation of
current. We simply connect one or more purely conceptual floating probes to the device
and then calculate the net current using the Büttiker equations, which can be applied to
any number of terminals.

We could even use the general current equation (see Eq. (9.4.1)), rather than the
low-bias conductance relation, extended to include multiple floating probes:

Ii = (q/h)

+∞∫
−∞

dE I i (E) (9.4.6)

where

I i (E) =
∑

j

T i j (E)[ fi (E) − f j (E)] (9.4.7)

One could then adjust the potential µ j to make the current at each energy equal to zero:
I j (E) = 0. In principle this could result in different values for µ j at different energies.
Alternatively, we could require a single value for µ j at all energies, adjusted to make
the total current at all energies equal to zero,

∫
dE I j (E) = 0. One could then have

positive values of I j (E) at certain energies balanced by negative values at other energies
making the total come out to zero, indicating a flow of electrons from one energy to
another due to the scattering processes that the “probe” is expected to simulate. This
makes the detailed implementation more complicated since different energy channels
get coupled together.

The transmission coefficients at a given energy are usually calculated from the
S-matrix for the composite device including the conceptual probes:

T i j = Trace[si j (E)s+
i j (E)] (9.4.8)
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But we could just as well combine this phenomenological approach with our Green’s
function method using separate self-energy matrices [	i ] to represent different floating
probes and then use the expression

T i j (E) = Trace[�i G� j G
+] (9.4.9)

to evaluate the transmission. This expression can be derived using the same procedure
described earlier for two-terminal structures. The current at terminal i is given by the
difference between the inflow and outflow:

Ii (E) = (1/--h) Trace{[�i (E)][[A(E)] fi − [Gn(E)]]}

Making use of the relations (see Eqs. (9.2.14), (9.2.27), and (9.2.28)) A =∑
j

G� j G+ and Gn = ∑
j

G� j G+ f j we can write

Ii (E) = (1/--h)
∑

q

Trace[�i G� j G
+]( fi − f j )

so that the current can be written as

Ii (E) = (1/--h)
∑

j

T i j ( fi − f j ) (9.4.10)

in terms of the transmission function defined above in Eq. (9.4.9).

Sum rule: A very useful result in the scattering theory of transport is the requirement
that the sum of the rows or columns of the transmission matrix equals the number of
modes:∑

j

T i j =
∑

j

T ji = Mi (9.4.11)

where Mi is the number of modes in lead i. One important consequence of this sum
rule is that for a two-terminal structure T 12 = T 21, even in a magnetic field, since with
a (2 × 2) T matrix:[

T 11 T 12

T 21 T 22

]
we have T 11 + T 12 = M1 = T 11 + T 21 → T 12 = T 21

Note that a similar argument would not work with more than two terminals. For example,
with a three-terminal structure we could show that T 12 + T 13 = T 21 + T 31, but we
could not prove that T 12 = T 21 or that T 13 = T 31.

The Green’s function-based expression for the transmission (see Eq. (9.4.9)) also
yields a similar sum rule:∑

j

T i j =
∑

j

T ji = Trace[�i A] (9.4.12)
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This is shown by noting that∑
j

T i j =
∑

j

Trace[�i G� j G
+] = Trace[�i G�G+] = Trace[�i A]

where we have made use of Eq. (9.2.14) in the last step. Similarly,∑
j

T ji =
∑

j

Trace[� j G�i G
+] = Trace[�i G

+�G] = Trace[�i A]

The quantity Trace[�i A] thus plays the same role that the number of modes Mi

plays in the scattering theory of transport. Interestingly, while Mi is an integer, Trace
[�i A] can take on any non-integer value. For example, if the device were a really
small one having just one level with E = ε, communicating with multiple reservoirs,
then

�i A = �i

(E − ε)2 + (�/2)2
with � =

∑
i

�i

which has the shape of a Lorentzian if the broadening is energy independent. Clearly
this can have any fractional value.

9.5 Examples

9.5.1 An analytical example

Scattering theory: To see that the Green’s function formalism gives the same answer as
the scattering theory of transport it is instructive to go through a simple example where
the results are easily worked out on paper. Consider, for example, a linear conductor
with a repulsive potential U(z) = U0 δ(z) at z = 0 (Fig. 9.5.1). The coefficients r and t
(in Fig. 9.5.1) are obtained by requiring that the wavefunction be continuous at z = 0:

[ψ]z=0+ − [ψ]z=0− = 0 → t − (1 + r ) = 0 (9.5.1a)

and that the derivative be discontinuous by[
dψ

dz

]
z=0+

−
[

dψ

dz

]
z=0−

= 2mU0

--h2 [ψ]z=0 → ik[t − (1 − r )] = 2mU0t
--h2 (9.5.1b)

t exp(ikz)exp(ikz)
r exp(−ikz)

z = 0

Fig. 9.5.1
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 n =  − 3       − 2         − 1             0            + 1            + 2           + 3 

Ec + 2t0 Ec + 2t0 Ec + 2t0

− t0 − t0 − t0

t0 ≡ h2/2mca
2

+ (U0/a)

a

exp(+ikna) 
t exp(+ikna) 

r exp(−ikna)

Fig. 9.5.2

Equations (9.5.1a, b) are solved to yield

t = i--hv

i--hv − U0
→ T = |t |2 =

--h2v2

--h2v2 + U 2
0

Scattering theory on a discrete lattice: Let us now redo this problem using a discrete
lattice with points spaced by a, the central cell having an extra potential (U0/a) for the
delta function (Fig. 9.5.2). We can carry out a discrete lattice version of the calculation
described above, starting from

Eψ0 = [Ec + 2t0 + (U0/a)]ψ0 − t0ψ−1 − t0ψ+1 (9.5.2)

and then writing

ψ0 = 1 + r = t

ψ+1 = t exp(+ika)

ψ−1 = exp(−ika) + r exp(+ika)

so that

ψ+1 = ψ0 exp(+ika)

ψ−1 = −2i sin ka + ψ0 exp(+ika) (9.5.3)

Substituting back into Eq. (9.5.2) yields

[E − Ec − 2t0 − (U0/a) + 2t0 exp(+ika)]ψ0 = 2it0 sin ka

Making use of the dispersion relation

E = Ec + 2t0(1 − cos ka) → --hv(E) = 2at0 sin ka (9.5.4)

this is simplified to [−(U0/a) + 2it0 sin ka]ψ0 = 2it0 sin ka
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+ (U0 /a)

n =  − 3           − 2         − 1             0              + 1           + 2            +3 
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− t0 − t0 − t0

t0 ≡   2 /2mca
2h

Fig. 9.5.3

that is,

ψ0 = i--hv

i--hv − U0
(9.5.5)

Hence the transmission is given by

T (E) = |t |2 = |ψ0|2 =
--h2v(E)2

--h2v(E)2 + U 2
0

(9.5.6)

Green’s function method: Finally, let us do this problem using the Green’s function
formulation presented in this chapter. We treat just one point as the “device” with a
(1 × 1) Hamiltonian given by (see Fig. 9.5.3)

[H ] = Ec + 2t0 + (U0/a)

while the effects of the two semi-infinite leads (one on each side) are represented by
(1 × 1) self-energy matrices as discussed in Chapter 8:

[	1(E)] = −t0 exp(ika) and [	2(E)] = −t0 exp(ika)

where ka is related to the energy E by the dispersion relation (see Eq. (9.5.4)), so that

[�1,2(E)] = i[	1,2 − 	+
1,2] = 2t0 sin ka = --hv/a

Since all matrices are (1 × 1) in size, it is easy to write down the Green’s function:

G = [EI − H − 	1 − 	2]−1

= [E − Ec − 2t0 + 2t0 exp(ika) − (U0/a)]−1

Using the dispersion relation to simplify as before

G = [i2t0 sin ka − (U0/a)]−1 = a/(i--hv − U0)
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so that the transmission is given by

T (E) = Trace[�1G�2G+] =
--h2v(E)2

--h2v(E)2 + U 2
0

in agreement with the earlier result (Eq. (9.5.6)).

9.5.2 Numerical example

The real power of the Green’s function method, of course lies not in simple problems like
this, but in its ability to handle complex problems without the need for any additional
formulation or setting up. Given a Hamiltonian [H] and self-energy matrices 	1(E) and
	2(E), the procedure is mechanical: Eqs. (9.1.5) and (9.1.10) can be applied blindly to
evaluate the transmission. Of course, complicated contacts can require some extra effort
to evaluate the appropriate self-energy matrices, but it is a one-time effort. Besides, as
we have mentioned earlier, one can make a reasonable guess based on Eqs. (8.3.12) and
(8.3.14) without a detailed calculation – a procedure that can be justified physically by
arguing that one never knows the precise shape of the contacts anyway. The examples
we discuss below are all based on one-dimensional leads for which the self-energy is
written down easily.

We use a one-dimensional discrete lattice with a = 0.3 nm to model each of the
following devices which are assumed to be single-moded in the transverse (x- and y-)
directions (Fig. 9.5.4). The barrier regions indicated by the “brick wall” pattern have a
conduction band that is 0.4 eV higher than the rest. We assume that the effective mass
(mc = 0.25m) is the same everywhere. Figure 9.5.5 shows the (non-self-consistent)

29  

3216 1 
z / a 

35 50 19 

26 

[H] [Σ2][Σ1](a)

(b)

(c)

Fig. 9.5.4 Three device examples: (a) ballistic device; (b) tunneling device; (c) resonant tunneling
device.
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Fig. 9.5.5 Equilibrium band diagram and transmission function for each of the devices in
Fig. 9.5.4.
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Fig. 9.5.6

equilibrium band diagram and transmission functions T (E) calculated numerically for
each of these devices from the Hamiltonian matrix [H] and the self-energy matrices
	1,2(E).

For the ballistic device the transmission is zero for energies below the band edge
Ec and increases to one above the band edge. For the tunneling device, the transmis-
sion increases from zero to one, though more slowly. The transmission for a resonant
tunneling device, on the other hand, shows a very different behavior with two sharp
resonances that can be understood by noting that the two barriers create a “box” with
discrete energy levels (Fig. 9.5.6, see Section 2.1). The transmission from left to right
peaks whenever the energy matches one of these levels. It is possible to obtain the
same results by matching wavefunctions and derivatives across different sections, but
the process quickly gets cumbersome. Arbitrary potential profiles, however, are easily
included in the Hamiltonian [H] and the transmission is then calculated readily from
the Green’s function formalism: T (E) = Trace[�1G�2G+].

In calculating the transmission through devices with sharp resonances (like the reso-
nant tunneling device) it is often convenient to include a Büttiker probe (see Section 9.4).
The reason is that it is easy to miss very sharp resonances in a numerical calculation if
the energy grid is not fine enough. A Büttiker probe simulates the role of phase-breaking
processes thereby broadening the resonance. The effective transmission is calculated
by solving the Büttiker equations (see Eq. (9.4.5)) as explained in the last section. In this
case the transmission between different terminals is reciprocal so that we can calculate
the effective transmission from a simple resistor network (see Fig. 9.5.7) adapted to
three terminals.

Noting that the conductance is proportional to the transmission we can write the
effective transmission using the elementary law of addition for conductors in series and
in parallel:

T eff(E) = T 12(E) + T 13(E)T 23(E)

T 13(E) + T 23(E)
(9.5.7)

Figure 9.5.8 shows the effective transmission for a resonant tunneling device with one
Büttiker probe attached to the center of the device. Compared to the earlier result
without a probe, the resonances are broadened somewhat, especially the sharpest
one.
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Fig. 9.5.8 Effective transmission function for a resonant tunneling device including a Büttiker
probe located at lattice site number 25 at the center of the device to simulate the effect of
phase-breaking processes phenomenologically. The curve shows result from Fig. 9.5.5c without a
Büttiker probe.

Current (I)–voltage (V) characteristics: Equation (9.1.9) can be used to calculate
the I–V characteristics of any coherent device, provided we know how the applied
voltage drops across the device. This is not important if we are only interested in
the low-bias conductance (or “linear response”), but can be of paramount importance
in determining the shape of the full current–voltage characteristics as discussed in
Section 1.4.

In general, for quantitatively correct results, it is important to solve for the potential
profile self-consistently. Just like the equilibrium problem (see Fig. 7.2.1), we should
include a self-consistently determined potential U in the total Hamiltonian H = H0 +
U ([δρ]).
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“Poisson” equation 

H0, U, Σ1, Σ2, µ1, µ2

→ ρ Eqs. (9.1.2)− (9.1.5)

→ I Eq. (9.1.7) or ( 9.1.9)

ρ → U

Fig. 9.5.9

This potential U represents the average potential that an electron feels due to the
change δρ in the electron density, or more generally the density matrix. The first
step in this process is to calculate the electron density from the diagonal elements of
the density matrix. This electron density can then be used in the Poisson equation to
calculate the potential which is then included in the Hamiltonian to recalculate the
electron density and so on till the process converges as sketched in Fig. 9.5.9. A full
self-consistent calculation like this can be time-consuming (we will describe a simple
one in Section 11.4) and so it is common to assume a “reasonable” potential profile.
What is a reasonable profile?

The basic principle is straightforward. If the channel were insulating (low quan-
tum capacitance, see Eq. (7.3.8)), the potential profile would be given by the Laplace
potential UL(�r ), obtained by solving the Laplace equation. But if it were metallic (large
quantum capacitance), the profile would be given by the “neutral potential” UN(�r )
obtained from the transport equation assuming perfect space charge neutrality every-
where. The correct potential profile is intermediate between these extremes. In regions
of low density of states the quantum capacitance is small and the potential profile will
tend to follow UL(�r ) while in regions with high density of states the quantum capaci-
tance is large and the potential profile will tend to follow UN(�r ). The common practice
for choosing a “reasonable profile” is to assume that the potential follows UN(�r ) (that
needed to maintain charge neutrality) at the ends which should be regions of high den-
sity of states, while in the central channel region the profile is assumed to follow the
Laplace potential UL(�r ).

Figure 9.5.10 shows the I–V characteristics for (a) the ballistic device, (b) the tunnel-
ing device, and (c) the resonant tunneling device calculated assuming that the potential
drops linearly across the central unshaded regions in Fig. 9.5.4. This assumed poten-
tial profile gives reasonable qualitative features, but it is easy to check that the results
can change quantitatively if we choose different profiles. We will talk about this fur-
ther in Section 11.4 when we discuss the factors that influence the ON current of a
nanotransistor.
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(a) Ballistic device 

(b) Tunneling device 

(c) Resonant tunneling device 
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Fig. 9.5.10 Current (I) versus voltage (V) characteristics of the three devices shown in Fig. 9.5.4
calculated assuming the linear potential profile shown. The left-hand plots show the assumed band
diagrams at a bias of 0.5 V.
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EXERCISES
E.9.1. Use a one-dimensional discrete lattice with a = 0.3 nm to model each of the
devices shown in Fig. 9.5.4 which are assumed to be single-moded in the transverse
(x- and y-) directions. Assume that the effective mass (mc = 0.25m) is the same every-
where. The barrier regions indicated by the “brick wall” pattern have a conduction band
that is 0.4 eV higher than the rest. (a) Set up an energy grid over the range −0.2 eV <

E < 0.8 eV and plot the transmission probability as a function of energy. Compare with
Fig. 9.5.2. (b) Plot the transmission probability as a function of energy for the resonant
tunneling device using a Büttiker probe as indicated in Fig. 9.5.8.

E.9.2. (a) Calculate the current (I)–voltage (V) characteristics in the bias range of 0 <

V < 1 V assuming that the applied bias drops across the device following the profile
shown in Fig. 9.5.10. Assume the equilibrium Fermi energy to be EF = 0.1 eV and
the chemical potentials in the two contacts under bias to be µ1 = EF + qV/2 and
µ2 = EF − qV/2. The energy integration needs to be carried out only over the range
µ1 + 4kBT < E < µ2 − 4kBT . Use an energy grid with �E ≈ 0.2kBT . (b) Calculate
the electron density n(x) per unit length assuming that the applied bias of 0.5 V drops
across the tunneling device following the profile shown in Fig. 9.5.10.

E.9.3. Transfer Hamiltonian: See Fig. E.9.3. Starting from the expression for the trans-
mission in Eq. (9.4.2), T (E) = Trace[�1G�2G+], and making use of the expressions
for the broadening matrices in Eq. (9.2.22) show that

T (E) = Trace[A1 MA2 M+]

where A1 and A2 are the spectral functions in the two contacts and the matrix element
M is given by

M = τ+
1 Gτ2

This form is similar to the version often seen in connection with the transfer Hamil-
tonian formalism (see for example, Eq. (2.3.5) on p. 69 of Chen (1993)). In the trans-
fer Hamiltonian formalism the matrix element M is assumed to be unaffected by the
coupling to the contacts which is assumed to be small, but in the present formula-
tion G and hence M are affected by the contacts through the self-energy due to the
contacts.

Channel

τ1 τ2

A1 A2
G

Source Drain

Fig. E.9.3
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E.9.4. 2D cross-section: In the examples of Section 9.5 we have assumed that the device
is one-dimensional. The 2D cross-section can be included in a simple way if we assume
periodic boundary conditions and assume that all the transverse modes are decoupled
as we did when calculating the capacitance in Chapter 7. We could then simply sum
our 1D result over all the transverse modes represented by the two-dimensional vector
�k to write (ε�k = --h2k2/2mc):

I = q

2π --h

∑
�k

+∞∫
−∞

dE T (E)[ f0(E + ε�k − µ1) − f0(E + ε�k − µ2)]

The transmission function depends only on the longitudinal energy E while the Fermi
functions are determined by the total energy E + ε�k . The summation over �k can be
carried out analytically to write (where S is cross-sectional area)

I

S
= q

π --h

+∞∫
−∞

dE T (E)[ f2D(E − µ1) − f2D(E − µ2)]

This means that the current in a device with a 2D cross-section is obtained using the
same procedure that we used for a 1D device, provided we use the k-summed Fermi
function f2D (see Eq. (7.2.12)) in place of the usual Fermi function. Repeat Exercise
E.9.2 using f2D (see Eq. (7.2.12)) instead of the Fermi function f0 to account for a device
with a 2D cross-section. The current should now be expressed in A/m2 and the electron
density should be expressed in /m3.

E.9.5. 1D cross-section: In analyzing field effect transistors, we often have a 1D cross-
section (y-direction) to sum over, while the transmission has to be calculated from a
2D problem in the z–x plane (Fig. E.9.5). Assuming periodic boundary conditions in
the y-direction show that the 1D k-sum can be done analytically to obtain

I

W
= q

π --h

+∞∫
−∞

dE T (E)[ f1D(E − µ1) − f1D(E − µ2)]

x

z 

GATE

GATE

D
R
A
I
N

S
O
U
R
C
E

CHANNEL

Fig. E.9.5
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where the 1D k-summed Fermi function is given by

f1D(E) ≡
(

mckBT

2π --h2

)
�−1/2

(
− E

kBT

)
with

�−1/2(x) ≡ 1√
π

+∞∫
0

dy

1 + exp(y − x)

1√
x

= d

dx
�1/2(x)

where �1/2(x) was defined in Eq. (7.2.22).

E.9.6. For more examples on coherent transport the reader can look at Datta (2000):
MATLAB codes used to generate the figures are available on request.



10 Non-coherent transport

In Chapter 9, we discussed a quantum mechanical model that describes the flow of
electrons coherently through a channel. All dissipative/phase-breaking processes were
assumed to be limited to the contacts where they act to keep the electrons in local
equilibrium. In practice, such processes are present in the channel as well and their role
becomes increasingly significant as the channel length is increased. Indeed, prior to the
advent of mesoscopic physics, the role of contacts was assumed to be minor and quantum
transport theory was essentially focused on the effect of such processes. By contrast,
we have taken a “bottom-up” view of the subject and now that we understand how
to model a small coherent device, we are ready to discuss dissipative/phase-breaking
processes.

Phase-breaking processes arise from the interaction of one electron with the sur-
rounding bath of photons, phonons, and other electrons. Compared to the coherent
processes that we have discussed so far, the essential difference is that phase-breaking
processes involve a change in the “surroundings.” In coherent interactions, the back-
ground is rigid and the electron interacts elastically with it, somewhat like a ping
pong ball bouncing off a truck. The motion of the truck is insignificant. In reality, the
background is not quite as rigid as a truck and is set in “motion” by the passage of
an electron and this excitation of the background is described in terms of phonons,
photons, etc. This is in general a difficult problem with no exact solutions and what
we will be describing here is the lowest order approximation, sometimes called the
self-consistent Born approximation, which usually provides an adequate description.
Within this approximation, these interactions can essentially be viewed as a coup-
ling of the channel from the “standard” configuration with {Nω} phonons/photons
(in different modes with different frequencies {ω}) to a neighboring configuration
with one less (absorption) or one more (emission) phonon/photon as depicted in
Fig. 10.1.

This coupling to neighboring configurations results in an outflow of electrons from
our particular subspace and a subsequent return or inflow back into this subspace. A
general model for quantum transport needs to include this inflow and outflow into the
coherent transport model from Chapter 9, through an additional terminal “s” described

252
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m1

m2

I

V

I
DrainSource

E, {Nw}

E + hw, {Nw −1} E − hw, {Nw +1}

Fig. 10.1 Phase-breaking introduces a coupling to neighboring configurations having one more or
one less number of excitations {Nω} than the original.

Trace ΓsG
n[ Trace Σ s

inA[ ]
m1

m2

 

I

V

I

Trace Γ2Gn[ ] 

Trace Σ1
in A][  

Trace Γ1Gn[ ]  

Trace Σ2
inA][  

Drain Source

s

]

Fig. 10.2 Non-coherent quantum transport: inflow and outflow.

by the additional terms 	in
s and 	s (see Fig. 10.2). My objective in this chapter is to

explain how these additional terms are calculated. We have seen that for the regular
contacts, the inscattering is related to the broadening:

	in
1 = �1 f1 and 	in

2 = �2 f2

However, for the scattering terminal both 	in
s and 	s have to be determined separately

since there is no Fermi function fs describing the scattering “terminal” and hence no
simple connection between 	in

s and 	s (or �s), unlike the contacts. Of course, one
could adopt a phenomenological point of view and treat the third terminal like another
contact whose chemical potential µs is adjusted to ensure zero current at this terminal.
That would be in the spirit of the “Büttiker probe” discussed in Chapter 9 and could
well be adequate for many applications. However, I will describe microscopic (rather
than phenomenological) models for 	in

s and 	s that can be used to benchmark any
phenomenological models that the reader may choose to use. They can also use these
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models as a starting point to include more sophisticated scattering mechanisms as
needed.

The inflow and outflow associated with dissipative processes involve subtle concep-
tual issues beyond what we have encountered so far with coherent transport. A fully
satisfactory description requires the advanced formalism described in the Appendix,
but in this chapter I will try to derive the basic results and convey the subtleties without
the use of this formalism. In the next chapter I will summarize the complete set of equa-
tions for dissipative quantum transport and illustrate their use with a few interesting
examples.

We will start in Section 10.1 by explaining two viewpoints that one could use to model
the interaction of an electron with its surroundings, say the electromagnetic vibrations
or photons. One viewpoint is based on the one-particle picture where we visualize
the electron as being affected by its surroundings through a scattering potential Us.
However, as we will see, in order to explain the known equilibrium properties it is
necessary to endow this potential Us with rather special properties that make it difficult
to include in the Schrödinger equation. Instead we could adopt a viewpoint whereby we
view the electron and photons together as one giant system described by a giant multi-
particle Schrödinger equation. This viewpoint leads to a more satisfactory description
of the interaction, but at the expense of conceptual complexity. In general it is important
to be able to switch between these viewpoints so as to combine the simplicity of the one-
particle picture with the rigor of the multi-particle approach. I will illustrate the basic
principle in Section 10.2 using a few simple examples before discussing the general
expressions for inflow and outflow in Section 10.3. Section 10.4 elaborates on the nature
of the lattice vibrations or phonons in common semiconductors for interested readers.

10.1 Why does an atom emit light?

We started this book by noting that the first great success of the Schrödinger equation
was to explain the observed optical spectrum of the hydrogen atom. It was found that
the light emitted by a hot vapor of hydrogen atoms consisted of discrete frequencies
ω = 2πν that were related to the energy eigenvalues from the Schrödinger equation:
--hω = εn − εm . This is explained by saying that if an electron is placed in an excited
state |2〉, it relaxes to the ground state |1〉, and the difference in energy is radiated in
the form of light or photons (Fig. 10.1.1). Interestingly, however, this behavior does
not really follow from the Schrödinger equation, unless we add something to it.

To see this let us write the time-dependent Schrödinger equation (Eq. (2.1.8)) in the
form of a matrix equation

i--h
d

dt
{ψ} = [H ]{ψ} (10.1.1)
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Excited state
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Atom

e1

= e2 −e1w

Fig. 10.1.1 If an electron is placed in an excited state |2〉, it will lose energy by radiating light and
relax to the ground state |1〉. However, this behavior does not follow from the Schrödinger
equation, unless we modify it appropriately.

using a suitable set of basis functions. If we use the eigenfunctions of [H] as our basis
then this equation has the form:

i--h
d

dt




ψ1

ψ2

· · ·
· · ·




=




ε1 0 0 · · ·
0 ε2 0 · · ·
0 0 ε3 · · ·

· · · · · ·







ψ1

ψ2

· · ·
· · ·




which decouples neatly into a set of independent equations:

i--h
d

dt
{ψn} = [εn]{ψn} (10.1.2)

one for each energy eigenvalue εn . It is easy to write down the solution to Eq. (10.1.2)
for a given set of initial conditions at t = 0:

ψn(t) = ψn(0) exp(−iεnt/--h) (10.1.3a)

This means that the probability Pn for finding an electron in state n does not change
with time:

Pn(t) = |ψn(t)|2 = |ψn(0)|2 = Pn(0) (10.1.3b)
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Fig. 10.1.2 In the one-particle viewpoint an electron is said to feel an external potential US due to
the photons in the surrounding “box” which causes it to relax from |2〉 to |1〉.

According to the Schrödinger equation, an electron placed in an excited state would
stay there for ever! Whatever it is that causes the excited state to relax is clearly not a
part of Eq. (10.1.1) or (10.1.2).

So what is missing? There are two ways to answer this question. Let us look at these
one by one.

One-particle viewpoint: This viewpoint says that an electron feels a random external
potential US due to the photons in the surrounding “box” which causes it to relax to
the ground state (Fig. 10.1.2). This potential gives rise to off-diagonal terms in the
Hamiltonian that couple the different states together. With just two states we could
write

i--h
d

dt

{
ψ1

ψ2

}
=

[
ε1 U S

12

U S
21 ε2

] {
ψ1

ψ2

}
(10.1.4)

Without getting into any details it is clear that if the electron is initially in state |2〉, the
term U S

12 will tend to drive it to state |1〉. But this viewpoint is not really satisfactory.
Firstly, one could ask why there should be any external potential US at zero temperature
when all thermal excitations are frozen out. The answer usually is that even at zero
temperature there is some noise present in the environment, and these so-called zero-
point fluctuations tickle the electron into relaxing from |2〉 to |1〉. But that begs the
second question: why do these zero-point fluctuations not provide any transitions from
|1〉 to |2〉? Somehow we need to postulate a scattering potential for which (note that
ε2 > ε1)

U S
21 = 0 but U S

12 �= 0

at zero temperature.
For non-zero temperatures, U S

21 need not be zero, but it will still have to be much
smaller than U S

12, so as to stimulate a greater rate S(2 → 1) of transitions from 2 to 1
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than from 1 to 2. For example, we could write

S(2 → 1) = K2→1 f2(1 − f1) and S(1 → 2) = K1→2 f1(1 − f2)

where f1(1 − f2) is the probability for the system to be in state |1〉 (level 1 occupied
with level 2 empty) and f2(1 − f1) is the probability for it to be in state |2〉 (level 2
occupied with level 1 empty). At equilibrium the two rates must be equal, which requires
that

K1→2

K2→1
= f2(1 − f1)

f1(1 − f2)
= (1 − f1)/ f1

(1 − f2)/ f2
(10.1.5)

But at equilibrium, the occupation factors f1 and f2 are given by the Fermi function:

fn = 1

1 + exp[(εn − µ) /kBT ]
→ 1 − fn

fn
= exp

(
εn − µ

kBT

)
Hence from Eq. (10.1.5),(

K1→2

K2→1

)
equilibrium

= exp

(
−ε2 − ε1

kBT

)
(10.1.6)

Clearly at equilibrium, K2→1 � K1→2, as long as the energy difference (ε2 − ε1) �
kBT .

Early in the twentieth century, Einstein argued that if the number of photons with
energy --hω present in the box is N, then the rate of downward transitions is proportional
to (N + 1) while the rate of upward transitions is proportional to N:

K (1 → 2) = αN photon absorption

K (2 → 1) = α(N + 1) photon emission (10.1.7)

This ensures that at equilibrium Eq. (10.1.6) is satisfied since the number of photons is
given by the Bose–Einstein factor

[N ]equilibrium = 1

exp(--hω/kBT ) − 1
(10.1.8)

and it is easy to check that(
K1→2

K2→1

)
equilibrium

=
(

N

N + 1

)
equilibrium

= exp

(
−

--hω

kBT

)
(10.1.9)

Since --hω = ε2 − ε1, Eqs. (10.1.9) and (10.1.6) are consistent.
What is not clear is why the external potential should stimulate a greater rate of

downward transitions (2 → 1) than upward transitions (1 → 2), but clearly this must
be the case if we are to rationalize the fact that, at equilibrium, lower energy states are
more likely to be occupied than higher energy states as predicted by the Fermi function.
But there is really no straightforward procedure for incorporating this effect into the



258 Non-coherent transport

 
       

0-photon

states 

 
        

H10

H01

H22H11H00

1-photon

states 
2-photon

states

e2

e2 + hw

ε2 + 2hw 

ε1 + 2hw 

e1 + hw

e1

H12

H21

Fig. 10.1.3 In the multi-particle viewpoint, the electron–photon coupling causes transitions
between |2, N〉 and |1, N−1〉, which are degenerate states of the composite system.

Schrödinger equation with an appropriate choice of the scattering potential US. Any
Hermitian operator US will have U S

12 = U S
21 and thus provide equal rates of upward

and downward transitions.

Many-particle viewpoint: This brings us to the other viewpoint, which provides a
natural explanation for the difference between upward and downward transition rates,
but is conceptually more complicated. In this viewpoint we picture the electron +
photon as one big many-particle system whose dynamics are described by an equation
that formally looks just like the Schrödinger equation (Eq. (10.1.1))

i--h
d

dt
{�} = [H ]{�} (10.1.10)

However, {�} now represents a state vector in a multi-particle Hilbert space, which
includes both the electron and the photon systems. The basis functions in this multi-
particle space can be written as a product of the electronic and photonic subspaces
(see Fig. 10.1.3):

|n, N 〉 = |n〉 ⊗ |N 〉
electron photon

just as the basis functions in a two-dimensional problem can be written as the product
of the basis states of two one-dimensional problems:

|kx , ky〉 = |kx〉 ⊗ |ky〉 ∼ exp(ikx x) exp(iky y)
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We can write Eq. (10.1.10) in the form of a matrix equation:

i--h
d

dt




�0

�1

�2


 =




H00 H01 0 · · ·
H10 H11 H12 · · ·
0 H21 H22 · · ·

· · · · · · · · ·







�0

�1

�2




where {�N } represents the N-photon component of the wavefunction. If the electronic
subspace is spanned by two states |1〉 and |2〉 as shown in Fig. 10.1.3 then {�N } is a
(2 × 1) column vector

{�N } =
{

ψ1,N

ψ2,N

}

and the matrices HNM are each (2 × 2) matrices given by

HNN =
[

ε1 + N --h ω 0
0 ε2 + N --h ω

]
(10.1.11)

HN ,N+1 =
[

0 K
√

N + 1
K ∗√N + 1 0

]

with HN+1,N = H+
N ,N+1

Broadening: The point is that if we consider the N-photon subspace, it is like an open
system that is connected to the (N + 1)- and (N − 1)-photon subspaces, just as a device
is connected to the source and drain contacts. In Chapter 8, we saw that the effect of the
source or drain contact could be represented by a self-energy matrix (see Eq. (8.1.11))

	 = τgτ+

whose imaginary (more precisely anti-Hermitian) part represents the broadening

� ≡ i[	 − 	+] = τaτ+

a ≡ i[g − g+] being the spectral function of the isolated reservoir. We could use the
same relation to calculate the self-energy function that describes the effect of the rest
of the photon reservoir on the N-photon subspace, which we view as the “channel.”
Actually the details are somewhat more complicated because (unlike coherent interac-
tions) we have to account for the exclusion principle. For the moment, however, let us
calculate the broadening (or the outflow) assuming all other states to be “empty” so
that there is no exclusion principle to worry about. Also, to keep things simple, let us
focus just on the diagonal element of the broadening:

[�nn(E)]N, N = [Hnm]N, N+1 [amm]N+1, N+1 [Hmn]N+1, N

+ [Hnm]N, N−1 [amm]N−1, N−1 [Hmn]N−1, N
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Assuming that the coupling from one photon subspace to the next is weak, we can
approximate the spectral functions a with their unperturbed values:

[�nn(E)]N, N = ∣∣K em
mn

∣∣2
(N + 1)2πδ [E − εm − (N + 1)--hω]

+ ∣∣K ab
mn

∣∣2
N2πδ [E − εm − (N − 1)--hω]

where

K em
mn ≡ [Hmn]N+1,N (10.1.12a)

and

K ab
mn ≡ [Hmn]N−1,N (10.1.12b)

Again with weak coupling between photon subspaces we can assume that the state
|n, N 〉 remains an approximate eigenstate with an energy εn + N --hω, so that we can
evaluate the broadening at E = εn + N --hω:

�nn = 2π
∣∣K em

mn

∣∣2
(N + 1)δ (εn − εm − --hω) (emission)

+ 2π
∣∣K ab

mn

∣∣2
Nδ (εn − εm + --hω) (absorption) (10.1.13)

The first term arises from the coupling of the N-photon subspace to the (N + 1)-
photon subspace, indicating that it represents a photon emission process. Indeed it is
peaked for photon energies --hω for which εn − --hω = εm , suggesting that we view it as
a process in which an electron in state n transits to state m and emits the balance of
the energy as a photon. The second term in Eq. (10.1.13) arises from the coupling of
the N-photon subspace to the (N − 1)-photon subspace, indicating that it represents
a photon absorption process. Indeed it is peaked for photon energies --hω for which
εn + --hω = εm , suggesting that we view it as a process in which an electron in state n
transits to state m and absorbs the balance of the energy from a photon.

Coupling constants: How do we write down the coupling constants K appearing in
Eq. (10.1.13)? This is where it helps to invoke the one-electron viewpoint (Fig. 10.1.2).
The entire problem then amounts to writing down the “potential” US that an electron
feels due to one photon or phonon occupying a particular mode with a frequency ω in
the form:

US(�r , t) = U ab(�r ) exp(−iωt) + U em(�r ) exp(+iωt) (10.1.14)

where U ab(�r ) = U em(�r )∗.
Once we have identified this “interaction potential,” the coupling constants for emis-

sion and absorption can be evaluated simply from the matrix elements of Uem and
Uab:

K em
mn =

∫
drφ∗

m(r )U emφn(r ) ≡ 〈m|U em |n〉
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and

K ab
mn =

∫
drφ∗

m(r )U abφn(r ) ≡ 〈m|U ab |n〉 (10.1.15)

where φm and φn are the wavefunctions for levels m and n respectively.

Electron–phonon coupling: In Section 10.4, I will try to elaborate on the meaning of
phonons. But for the moment we can simply view them as representing the vibrations of
the lattice of atoms, just as photons represent electromagnetic vibrations. To write down
the interaction potential for phonons, we need to write down the atomic displacement
or the strain due to the presence of a single phonon in a mode with frequency ω and then
multiply it by the change D in the electronic energy per unit displacement or strain. The
quantity D, called the deformation potential, is known experimentally for most bulk
materials of interest and one could possibly use the same parameter unless dealing with
very small structures. Indeed relatively little work has been done on phonon modes
in nanostructures and it is common to assume plane wave modes labeled by a wave
vector �β, which is appropriate for bulk materials. The presence of a (longitudinal)
phonon in such a plane wave mode gives rise to a strain (ρ is the mass density and �

is the normalization volume)

S = β
√

2--h/ρω� cos( �β · �r − ω(β)t) (10.1.16)

so that the interaction potentials in Eq. (10.1.14) are given by

U ab
�β (�r ) ≡ (U �β/2) exp(i �β · �r ) and U em

�β (�r ) = U ab
�β (�r )∗ (10.1.17)

where U �β = Dβ
√

2--h/ρω�.

Electron–photon coupling: The basic principle for writing down the electron–photon
coupling coefficient is similar: we need to write down the interaction potential that
an electron feels due to the presence of a single photon in a particular mode. How-
ever, the details are complicated by the fact that the effect of an electromagnetic
field enters the Schrödinger equation through the vector potential (which we dis-
cussed very briefly in the supplementary notes in Chapter 5) rather than a scalar
potential.

First, we write down the electric field due to a single photon in mode
( �β, ν̂

)
in the

form

�E = ν̂E0 sin( �β · �r − ω(β)t)

whose amplitude E0 is evaluated by equating the associated energy to --hω (� is the
volume of the “box”):

εE2
0�/2 = --hω → |E0| =

√
2--hω/ε�
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The corresponding vector potential �A is written as (noting that for electromagnetic
waves �E = −∂ �A/∂t):

�A = ν̂ A0 cos( �β · �r − ω(β)t) with |A0| =
√

2--h/ωε� (10.1.18)

Next we separate the vector potential due to one photon into two parts (cf. Eq. (10.1.14)):

�A(�r, t) = �Aab(�r ) exp(−iω(β)t) + �Aem(�r ) exp(+iω(β)t) (10.1.19)

where �Aab(�r ) ≡ ν̂(A0/2) exp(i �β · �r ) and �Aem(�r ) = �Aab(�r )∗

The coupling coefficient for absorption processes is given by the matrix element for
(q/m) �Aab(�r ) · �p, while the coupling coefficient for emission processes is given by the
matrix element for (q/m) �Aem(�r ) · �p so that ( �p ≡ −i--h �∇)

Kmn( �β, ν̂) = (qA0/2m)〈m| exp(i �β · �r ) �p · ν̂|n〉 Absorption (10.1.20a)

Kmn( �β, ν̂) = (qA0/2m)〈m| exp(−i �β · �r ) �p · ν̂|n〉 Emission (10.1.20b)

Note that the m appearing here stands for mass and is different from the index m we
are using to catalog basis functions.

Equations (10.1.20a, b) require a slightly extended justification since we have not
had much occasion to deal with the vector potential. We know that the scalar potential
φ(�r ) enters the Schrödinger equation additively:

p2/2m → (p2/2m) − qφ(�r )

and if the photon could be represented by scalar potentials the coupling coefficients
would simply be given by the matrix elements of (−q)φab(�r ) and (−q)φem(�r ) for absorp-
tion and emission respectively as we did in writing down the electron–phonon coupling.
But photons require a vector potential which enters the Schrödinger equation as

p2/2m → ( �p + q �A) · ( �p + q �A)/2m

so that the change due to the photon is given by

(q/2m)( �A · �p + �p · �A) + (q2/2m) �A · �A ≈ (q/2m)( �A · �p + �p · �A)

assuming that the vector potential is small enough that the quadratic term is negligible.
Finally we note that for any scalar function φ(�r )

�p · ( �Aφ) = �A · ( �pφ) + φ( �p · �A)

so that we can write

(q/2m)( �A · �p + �p · �A) = (q/m) �A · �p
as long as �p · �A = 0. It can be checked that this is indeed true of the photon vector
potential given in Eq. (10.1.19) because of the transverse nature of electromagnetic
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waves which requires that the wavevector �β and the polarization ν̂ be orthogonal to
each other: �β · ν̂ = 0. This allows us to obtain the coupling coefficient from the matrix
element for (q/m) �A(�r ) · �p using �A → �Aab(�r ) for absorption processes and �A → �Aem(�r )
for emission processes.

10.2 Examples

In this section I will go through a few examples to illustrate the basic approach for
describing incoherent interactions. I will take up the more general case of inflow and
outflow in Section 10.3, but in this section I will assume all other states to be “empty”
so that there is no exclusion principle to worry about and I will calculate the broad-
ening (or the outflow), which can be identified with --h/τ , τ being the lifetime of the
state. This will include: (1) the photon-induced (radiative) lifetime due to atomic tran-
sitions; (2) the radiative lifetime due to interband transitions in semiconductors; and
(3) the phonon-induced (non-radiative) lifetime due to intraband transitions in semi-
conductors (Fig. 10.2.1). The basic approach is to write down the interaction potential
(see Eq. (10.1.14)), evaluate the coupling constants (see Eq. (10.1.15)), and obtain the
broadening and hence the lifetime from Eq. (10.1.13).

10.2.1 Atomic transitions

From Eq. (10.1.13) it is apparent that the broadening is large when the argument of
the delta function vanishes. How large it is at that point depends on the value of 0+

(see Section 8.4) that we choose to broaden each reservoir state. As we have seen
in Chapter 8, the precise value of 0+ usually does not matter as long as the system

Valence 
band

Conduction 
band

Intraband 

transition

Interband 

transition

k

E

Fig. 10.2.1 Electronic transitions in semiconductors can be classified as interband and intraband.
The former are associated primarily with electron–photon interactions while the latter are
associated primarily with electron–phonon interactions.
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{Ψm,  N−1} {Ψn,  N} {Ψm,  N+1}

Fig. 10.2.2

is coupled to a continuous distribution of reservoir states. This is true in this case,
because we usually do not have a single photon mode with energy --hω. Instead, we have
a continuous distribution of photons with different wavevectors �β with energies given
by

--hω( �β) = --h cβ (10.2.1)

where c is the velocity of light in the solid. Consequently the states in a particular
subspace do not look discrete as shown in Fig. 10.1.3, but look more like as shown in
Fig. 10.2.2.

The broadening is obtained from Eq. (10.1.13) after summing over all modes �β and
the two allowed polarizations ν̂ for each �β:

�nn =
∑
�β,ν̂

2π |Kmn( �β, ν̂)|2(N �β,ν̂ + 1)δ(εn − εm − --hω(β))

+
∑
�β,ν̂

2π |Kmn( �β, ν̂)|2 N �β,ν̂δ(εn − εm + --hω(β)) (10.2.2)

If the photon reservoir is in equilibrium then the number of photons in mode �β and
polarization ν̂ is given by the Bose–Einstein factor (Eq. (10.1.8)):

N �β,ν̂ = 1

exp(--hω(β)/kBT ) − 1
(10.2.3)

If we consider transitions involving energies far in excess of kBT , then we can set N �β,ν̂

equal to zero, so that the broadening (which is proportional to the inverse radiative
lifetime τr) is given by

�nn =
( --h

τr

)
n

=
∑
�β,ν̂

2π |Kmn( �β, ν̂)|2δ(εn − εm − --hωβ) (10.2.4a)

which is evaluated by converting the summation into an integral assuming periodic
boundary conditions for the photon modes. We follow the same prescription that we
have used in the past for electronic states, namely,

∑
�β

→ �

8π3

∞∫
0

dβ β2

+π∫
0

dθ sin θ

2π∫
0

dφ
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P n

q

ˆ
b

Fig. 10.2.3 Emission of photon with wavevector �β and polarization ν̂ by an atomic transition with
an equivalent dipole moment �P .

(where � is again the volume of the “box”) to obtain

�nn = �

8π3

∑
ν̂

∞∫
0

dβ β2

+π∫
−π

dθ sin θ

2π∫
0

dφ 2π |Kmn( �β, ν̂)|2δ(εn − εm − --hωβ)

(10.2.4b)

To proceed further, we need to insert the electron–photon coupling coefficients K from
Eqs. (10.1.20a, b).

For atomic wavefunctions that are localized to extremely short dimensions (much
shorter than an optical wavelength) we can neglect the factor exp(i �β · �r ) and write from
Eq. (10.1.20a, b)

Kmn( �β, ν̂) = q

m

√
--h

2εω�
P sin θ (10.2.5)

where �P ≡ 〈m| �p |n〉 and θ is the complement of the angle between the dipole moment
of the transition and the polarization of the photon (Fig. 10.2.3).

Using Eqs. (10.2.5) and (10.2.1) we can find the radiative lifetime from Eq. (10.2.4b):

� = �

8π3

∞∫
0

dω ω2

c3

+π∫
−π

dθ sin3θ

2π∫
0

dφ
q2--h

2m2εω�
P22πδ(εn − εm − --hω)

so that

1

τr
= �

--h
= q2

4πε--hc

2(εn − εm)

3--hmc2

2P2

m
(10.2.6)

Note that the answer is obtained without having to worry about the precise height
of the delta function (which is determined by the value of 0+ as we discussed in
Section 8.4). But if the photon modes do not form a quasi-continuous spectrum (as in
small nanostructures) then it is conceivable that there will be reversible effects that are
affected by the precise values of 0+.
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Analogy with a classical dipole antenna: We can calculate the amount of power
radiated per electron (note that --hω = εn − εm) from:

W =
--hω

τ
= q2

4πε--hc

2(εn − εm)2

3--hmc2

2P2

m
= ω2

12πεc3

(
2qP

m

)2

(10.2.7)

It is interesting to note that the power radiated from a classical dipole antenna of length
d carrying a current Icos ωt is given by

W = ω2

12πεc3 (Id)2

suggesting that an atomic radiator behaves like a classical dipole with

�I d = 2q �P/m = (2q/m) 〈m| �p |n〉 (10.2.8)

antenna atomic
radiator

Indeed it is not just the total power, even the polarization and angular distribution of
the radiation are the same for a classical antenna and an atomic radiator. The light is
polarized in the plane containing the direction of observation and �P, and its strength is
proportional to ∼sin2θ , θ being the angle between the direction of observation and the
dipole as shown in Fig. 10.2.3.

10.2.2 Interband transitions in semiconductors

The basic rule stated in Eqs. (10.1.20a, b) for the coupling coefficients can be applied
to delocalized electronic states too, but we can no longer neglect the factor exp(i �β · �r )
as we did when going to Eq. (10.2.5). For example, in semiconductors (see Fig. 10.2.1),
the conduction (c) and valence (v) band electronic states are typically spread out over
the entire solid consisting of many unit cells as shown in Fig. 10.2.4 where |c〉n and |v〉n

are the atomic parts of the conduction and valence band wavefunctions in unit cell n.
These functions depend on the wavevector �kc or �kv, but are the same in each unit cell,
except for the spatial shift. This allows us to write the coupling elements for absorption
and emission from Eq. (10.1.20a, b) in the form

〈v| �p · ν̂|c〉
∑

n

1

N
exp[i(�kc ± �β − �kv) · �rn]

where we take the upper sign (+) for absorption and the lower sign (−) for emission,
〈. . .〉 denotes an integral over a unit cell, and we have neglected the variation of the
factor exp(i �β · �r ) across a unit cell. This leads to non-zero values only if

�kv = �kc ± �β (10.2.9)

Eq. (10.2.9) can be viewed as a rule for momentum conservation, if we identify --h�k as the
electron momentum and --h �β as the photon momentum. The final electronic momentum
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√

Fig. 10.2.4

--h�kv is equal to the initial electronic momentum --h�kc plus or minus the photon momentum
--h �β depending on whether the photon is absorbed or emitted. The photon wavevector is
typically very small compared to the electronic wavevector, so that radiative transitions
are nearly “vertical” with �kv = �kc ± �β ≈ �kc. This is easy to see if we note that the
range of k extends over a Brillouin zone which is ∼2π divided by an atomic distance,
while the photon wavevector is equal to 2π divided by the optical wavelength which is
thousands of atomic distances.

Assuming that the momentum conservation rule in Eq. (10.2.9) is satisfied, we can
write the coupling coefficients from Eq. (10.1.20a, b) as

Kmn( �β, ν̂) = q

m

√
--h

2εω�
P sin θ where �P ≡ 〈v| �p |c〉 (10.2.10)

showing that “vertical” radiative transitions in semiconductors can be understood in
much the same way as atomic transitions (see Eq. (10.2.5)) using the atomic parts of the
conduction and valence band wavefunctions. For example, if we put the numbers char-
acteristic of conduction–valence band transitions in a typical semiconductor like GaAs
into Eq. (10.2.6), εn − εm = 1.5 eV, 2P2/m = 20 eV, ε = 10ε0, we obtain τr = 0.7 ns
for the radiative lifetime.

Polarization and angular distribution: We know that the electronic states at the bot-
tom of the conduction band near the �-point are isotropic or s-type denoted by |S〉.
If the states at the top of the valence band were purely px, py, and pz types denoted by
|X〉, |Y 〉, |Z〉, then we could view the system as being composed of three independent
antennas with their dipoles pointing along x-, y-, and z-directions since

〈s| �p |X〉 = x̂ P 〈s| �p |Y 〉 = ŷ P 〈s| �p |Z〉 = ẑ P

The resulting radiation can then be shown to be unpolarized and isotropic. In reality,
however, the top of the valence band is composed of light hole and heavy hole bands
which are mixtures of up- and down-spin states and the equivalent dipole moments for
each of the conduction–valence band pairs can be written as shown in Table 10.2.1.

We thus have eight independent antennas, one corresponding to each conduction
band–valence band pair. If the C state is occupied, then the first row of four antennas
is active. If we look at the radiation coming out in the z-direction then we will see the
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Table 10.2.1 Optical matrix elements for conduction–valence band transitions

HH HH LH LH


|X〉 + i|Y 〉√
2

0







0

|X〉 − i|Y 〉√
2







−
√

2

3
|Z〉

|X〉 + i|Y 〉√
6







|X〉 − i|Y 〉√
6√

2

3
|Z〉




C

{
|S〉
0

}
x̂ + iŷ√

2
P 0 −

√
2

3
ẑ P

x̂ − iŷ√
6

P

C

{
0
|S〉

}
0

x̂ − iŷ√
2

P
x̂ + iŷ√

6
P

√
2

3
ẑ P

radiation from the C–HH and C–LH transitions. The C–HH transition will emit right
circularly polarized (RCP) light, which will be three times as strong as the left circularly
polarized (LCP) light from the C–LH transition. If the C state is also occupied then the
C–HH transition would yield three times as much LCP light as the RCP light from the
C–LH transition. Overall there would be just as much LCP as RCP light. But if only
the C state is occupied then there would be thrice as much RCP light as LCP light.
Indeed the degree of circular polarization of the emission is often used as a measure of
the degree of spin polarization that has been achieved in a given experiment.

10.2.3 Intraband transitions in semiconductors

We have discussed the radiation of light due to interband transitions in semiconductors
(see Fig. 10.2.1). But what about intraband transitions? Can they lead to the emission
of light? We will show that the simultaneous momentum and energy conservation
requirements prevent any radiation of light unless the electron velocity exceeds the
velocity of light: --hk/m > c. This is impossible in vacuum, but could happen in a solid
and such Cerenkov radiation of light by fast-moving electrons has indeed been observed.
However, this is usually not very relevant to the operation of solid-state devices because
typical electronic velocities are about a thousandth of the speed of light. What is more
relevant is the Cerenkov emission of acoustic waves or phonons that are five orders
of magnitude slower than light. Electron velocities are typically well in excess of the
phonon velocity leading to extensive Cerenkov emission (and absorption) of phonons,
somewhat like the sonic booms generated by supersonic jets.

Criteria for Cerenkov emission: For intraband transitions, both the final and initial
states have the same atomic wavefunctions and, for clarity, I will not write them down
explicitly. Instead I will write the initial and final states in the form of plane waves as
if we are dealing with electrons in vacuum:

|�k〉 ≡ (1/
√

�) exp(i�k · �r ) and |�kf〉 ≡ (1/
√

�) exp(i�kf · �r ) (10.2.11)
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Fig. 10.2.5 Cerenkov emission: initial state �k, photon wavevector �β, and final state �k – �β. The
photon polarization is along ν̂.

From Eq. (10.1.20a, b) we find that the radiative coupling constant is equal to

K (�kf, �k, �β, ν̂) = (q A0/2m)--h�k · ν̂ (10.2.12)

if �kf = �k − �β �kf = �k + �β (10.2.13)

Emission Absorption

and is zero otherwise. Like Eq. (10.2.9), Eq. (10.2.13) too can be interpreted as a
condition for momentum conservation. Energy conservation, on the other hand, is
enforced by the delta function in Eq. (10.1.13):

ε(�kf) = ε(�k) − --hω( �β) ε(�kf) = ε(�k) + --hω( �β) (10.2.14)

Emission Absorption

From Eqs. (10.2.13) and (10.2.14) we obtain for emission processes

ε(�kf) − ε(�k) + --hω( �β) = 0 =
--h2

2m
([�k − �β] · [�k − �β] − k2) + --h cβ

so that
--h2

2m
(−2kβ cos θ + β2) + --hcβ = 0

which yields

cos θ = c
--hk/m

+ β

2k
(10.2.15)

The point is that, since cos θ must be smaller than one, Cerenkov emission cannot take
place unless the electron velocity --hk/m exceeds the velocity of light c. As mentioned
above, this is impossible in vacuum, but possible in a solid and Cerenkov radiation has
indeed been observed. The emitted light forms a cone around the electronic wavevector
�k with a maximum angle θmax = cos−1(mc/--hk) (Fig. 10.2.5).

Cerenkov emission of acoustic phonons: As stated before, Cerenkov emission of
light is not very relevant to the operation of solid-state devices. But the emission
(and absorption) of sound waves or acoustic phonons is quite relevant. Acoustic waves
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are five orders of magnitude slower than light and the velocity of electrons routinely
exceeds the sound velocity. Since acoustic phonons typically have energies less than
kBT they are usually present in copious numbers at equilibrium:

N �β + 1 − N �β = [exp(--hω(β)/kBT ) − 1]−1 ∼= kBT/--hω(β) (acoustic phonons)

Both terms in Eq. (10.1.13) now contribute to the broadening or inverse lifetime:
Cerenkov absorption (“ab”) is just as important as Cerenkov emission (“em”):

(�)�k,em =
∑

�β
2π

kBT
--hω(β)

|K ( �β)|2δ[ε(�k) − ε(�k − �β) − --hω( �β)] (10.2.16a)

(�)�k,ab =
∑

�β
2π

kBT
--hω(β)

|K ( �β)|2δ[ε(�k) − ε(�k + �β) + --hω( �β)] (10.2.16b)

The coupling element K ( �β) is proportional to the potential that an electron feels due
to the presence of a single phonon as discussed earlier (see Eq. (10.1.18)). Without
getting into a detailed evaluation of Eqs. (10.2.16a, b), it is easy to relate the angle of
emission θ to the magnitude of the phonon wavevector β by setting the arguments of
the delta functions to zero and proceeding as we did in deriving Eq. (10.2.15):

cos θ = cs
--h k/m

+ β

2k
(emission)

cos θ = cs
--h k/m

− β

2k
(absorption) (10.2.17)

where cs is the velocity of sound waves: ω = csβ. The detailed evaluation of the electron
lifetime due to acoustic phonon emission and absorption from Eqs. (10.2.16a, b) is
described in Exercise E.10.1.

Cerenkov emission of optical phonons: In addition to acoustic phonons, there are
optical phonons (see supplementary notes in Section 10.4) whose frequency is nearly
constant ω = ω0, where the phonon energy --hω0 is typically a few tens of millielectron-
volts, so that the number of such phonons present at equilibrium at room temperature
is of order one:

N �β = [exp(--hω0/kBT ) − 1]−1 ≡ N0 (optical phonons)

From Eq. (10.1.13) we now obtain for the emission and absorption rates

(�)�k,em = (N0 + 1)
∑

�β
2π |K( �β)|2δ[ε(�k) − ε(�k − �β) − --hω0] (10.2.18a)

(�)�k,ab = N0

∑
�β

2π |K( �β)|2δ[ε(�k) − ε(�k + �β) + --hω0] (10.2.18b)

which can be evaluated as described in Exercise E.10.2.
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10.3 Inflow and outflow

Let me now explain how we can use the concepts developed in this chapter to write
down the new terms 	in

s and �s appearing in Fig. 10.2 (p. 252).

Discrete levels: To start with, consider the inflow and outflow into a specific energy
level ε due to transitions from levels a and b – one above it and one below it separated by
an energy of --hω: εb − ε = ε − εa = --hω (Fig 10.3.1). We saw in Section 10.1 that the
rate constant (K ab) for absorption processes is proportional to the number of phonons
present (Nω) while the rate constant (K em) for emission processes is proportional to
(Nω + 1). Let’s assume the temperature is very low compared to --hω, so that Nω � 1
and we need only worry about emission. Using N, Na , and Nb to denote the number of
electrons in each of these levels we can write for the level ε:

Inflow = K em(1 − N )Nb and Outflow = K em N (1 − Na)

We can now write the inflow term as a difference between two terms

Inflow = K em Nb − K em NNb

where the second term represents the part of the inflow that is blocked by the exclu-
sion principle. A non-obvious result that comes out of the advanced formalism (see
Appendix, Section A.4) is that this part of the inflow is not really blocked. Rather the
outflow is increased by this amount (KemNNb):

Inflow = K em Nb and Outflow = K em N (1 − Na + Nb) (10.3.1a)

Nw − 1

 

 eb

e

e

Nw Nw + 1

Absorption

Emission

a

eb

e

e

a

eb

e

e

a

Fig. 10.3.1 An idealized device with three levels used to write down the inflow and outflow terms
due to the absorption and emission of photons and phonons.
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The difference between inflow and outflow is not changed from what we had guessed
earlier. But the distinction is not academic, since the outflow (not the difference) deter-
mines the broadening of the level. We can compare this with the inflow and outflow
between a contact and a discrete level that we discussed earlier (see Fig. 8.1):

Inflow = γ f and Outflow = γ N (10.3.1b)

The inflow looks similar with Kem playing the role of γ , but the outflow involves
an extra factor (1 − Na + Nb) that reduces to one if Na = Nb, but not in general.
Equation (10.3.1b) was earlier generalized to the form (see Fig. 9.1.2)

Inflow = Trace[�A] f = Trace[	in A] and Outflow = Trace[�Gn]

Similarly in the present case we can generalize Eq. (10.3.1a) to

Inflow = Trace
[
	in

s A
]

and Outflow = Trace[�sG
n] (10.3.2)

where the expressions for 	in
s and �s can be discovered heuristically by analogy. Let

us do this one by one.

Inflow for continuous distribution of states: Scattering processes are very similar
to ordinary contacts. The basic difference is that regular contacts are maintained in
equilibrium by external sources, while for scattering processes the “contact” is the
device itself (see Fig. 10.3.1) and as such can deviate significantly from equilibrium.
For regular contacts we saw in Chapter 8 that the inscattering function is given by

	in(E) = [τAτ+] f = [τGn τ+]

where [Gn] = [A] f is the correlation function in the contact: the contact correlation
function at energy E causes inscattering into the device at an energy E. Now for emission
processes, the device correlation function at E + --hω causes inscattering into the device
at energy E, suggesting that we write

	in
s (E) =

∑
�β

(N �β + 1)
[
U em

�β Gn(E + --hω( �β))
(
U em

�β
)+]

where Uem is the emission component of the interaction potential (see Eq. (10.1.17)).
Writing out the matrix multiplication in detail we have

	in
s (i, j ; E) =

∑
p′, q ′, �β

(N �β + 1)U em
�β (i, r )Gn(r, s; E + --hω( �β))U em

�β ( j, s)∗

=
∞∫

0

d(--hω)

2π

∑
p′, q ′

Dem(i, r ; j, s; --hω)Gn(r, s; E + --hω) (10.3.3)
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where

Dem(i, r ; j, s; --hω) ≡ 2π
∑

�β
(Nω + 1)δ(--hω − --hω( �β))U em

�β (i, r )U em
�β ( j, s)∗ (10.3.4)

If we include absorption processes we obtain

	in
s (i, j ; E) =

∞∫
0

d(--hω)

2π

(
Dem(i, r ; j, s; --hω)Gn(r, s; E + --hω)

+ Dab(i, r ; j, s; --hω)Gn(r, s; E − --hω)

)
(10.3.5)

where the absorption term is given by an expression similar to the emission term with
N instead of (N + 1):

Dab(i, r ; j, s; --hω) =
∑

�β
Nωδ(--hω − --hω( �β))U ab

�β (i, r ) U ab
�β ( j, s)∗ (10.3.6)

In general, the emission and absorption functions Dem and Dab are fourth-rank tensors,
but from hereon let me simplify by treating these as scalar quantities. The full tensorial
results along with a detailed derivation are given in Section A.4 of the Appendix. We
write the simplified emission and absorption functions as

Dem(--hω) ≡ (Nω + 1)D0(--hω) (10.3.7a)

Dab(--hω) ≡ Nω D0(--hω) (10.3.7b)

So that

	in
s (E) =

∞∫
0

d(--hω)

2π
D0(--hω) ((Nω + 1)Gn(E + --hω) + NωGn(E − --hω)) (10.3.8)

Outflow for continuous distribution of states: For the outflow term, in extrapolating
from the discrete version in Eq. (10.3.1a) to a continuous version we replace Nb with
Gn(E + --hω) and 1 − Na with Gp(E − --hω) to obtain

�s(E) =
∫

d(--hω)

2π
Dem(--hω) [Gp(E − --hω) + Gn(E + --hω)]

where I have defined a new quantity Gp ≡ A − Gn that tells us the density (/eV) of
empty states or holes, just as Gn tells us the density of filled states or electrons. The
sum of the two is equal to the spectral function A which represents the density of states.
We can extend this result as before (cf. Eqs. (10.3.5)–(10.3.10)) to include absorption
terms as before to yield

�s(E) =
∫

d(--hω)

2π
D0(--hω)

(
(Nω + 1) [Gp(E − --hω) + Gn(E + --hω)]

+ Nω [Gn(E − --hω) + Gp(E + --hω)]

)
(10.3.9)
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Equations (10.3.8)–(10.3.9) are the expressions for the scattering functions that we are
looking for. The self-energy function 	s can be written as Re(	s) + i�s/2 where the
real part can be obtained from the Hilbert transform of the imaginary part given in
Eq. (10.3.9) as explained in Section 8.3.

Migdal’s “theorem”: If the electronic distribution can be described by an equilibrium
Fermi function

Gn(E ′) ≡ f (E ′)A(E ′) and Gp(E ′) ≡ (1 − f (E ′))A(E ′)

then

�s(E) =
∫

d(--hω)
∫

dE ′ D0(--hω) · A(E ′)

× ( Nω + 1 − f (E ′))δ(E − E ′ − --hω) + (Nω + f (E ′))δ(E − E ′ + --hω )

which is the expression commonly found in the literature on electron–phonon scattering
in metals where it is referred to as Migdal’s “theorem” (see, for example, Allen and
Mitrovic, 1982). Close to equilibrium, a separate equation for the inscattering function
	in

s (E) is not needed, since it is simply equal to f(E)�s(E), just like an ordinary contact.

Nearly elastic processes: Note that the expressions simplify considerably for low-
energy scattering processes (--hω → 0) for which we can set E + --hω ≈ E ≈ E − --hω:

	in
s (E) =

∞∫
0

d(--hω)(Dem(--hω) + Dab(--hω)) Gn(E) (10.3.10)

�s(E) =
∞∫

0

d(--hω)(Dem(--hω) + Dab(--hω)) A(E) (10.3.11)

Indeed, in this case the real part of the self-energy 	s does not require a separate Hilbert
transform. We can simply write

	s(E) =
∞∫

0

d(--hω)(Dem(--hω) + Dab(--hω)) G(E) (10.3.12)

since Re(	s) is related to �s in exactly the same way as Re(G) is related to A, namely
through a Hilbert transform.

The complete equations of dissipative quantum transport including the inflow/outflow
terms discussed in this section are summarized in Chapter 11 along with illustrative
examples.
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10.4 Supplementary notes: phonons

As I have mentioned before, phonons represent lattice vibrations just as photons repre-
sent electromagnetic vibrations. In this section I will try to elaborate on this statement
and clarify what I mean. At low temperatures, the atoms that make up a molecule or a
solid are frozen in their positions on the lattice and this frozen atomic potential is used
in calculating the energy levels for the electrons, starting from the Schrödinger equa-
tion. As the temperature is raised these vibrations increase in amplitude and exchange
energy with the electrons through the “electron–phonon interaction.” To understand
how we describe these vibrations, let us start with a simple example, namely a hydro-
gen molecule.

As we discussed in Chapter 3, we could describe the vibrations of this molecule in
terms of a mass and spring system (Fig. 10.4.1). The mass M is just that of the two
hydrogen atoms, while the spring constant K is equal to the second derivative of the
potential energy with respect to the interatomic distance. We know from freshman
physics that such a system behaves like an oscillator with a resonant frequency
ω = √

K/M . Experimentalists have measured this frequency to be approximately
ω = 2π (1014/s). Knowing M we could calculate K and compare against theory, but that
is a different story. The question we wish to address is the following. As we raise the
temperature we expect the molecule to vibrate with increasing amplitude due to the ther-
mal energy that it takes up from the surroundings. At very high temperatures the vibra-
tions could become so violent that the molecule dissociates. But we are assuming that
the temperature is way below that so that the amplitude of this vibration is much smaller
than the bond length a. What is this amplitude as a function of the temperature?

To make our discussion quantitative, let us define a variable u(t) that measures the
distance between the two atoms, relative to the equilibrium value of u0. We expect the
atoms to oscillate with a frequency ω such that

u(t) = A cos(ωt + φ)

It is convenient to define a complex amplitude ũ = (A/2) exp[iφ] and write

u(t) = ũ exp[−iωt] + ũ∗ exp[+iωt] (10.4.1)

The kinetic energy associated with this vibration is written as

KE = M

2

(
du

dt

)2

= Mω2 A2

2
sin2(ωt + φ)

H H

Fig. 10.4.1 A hydrogen molecule can be viewed as two masses connected by a spring.
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Fig. 10.4.2 Allowed energy levels of an oscillator with a resonant frequency ω.

while the potential energy is given by (note that K = Mω2)

PE = K

2
u2 = Mω2 A2

2
cos2(ωt + φ)

so that the total energy is independent of time as we might expect:

E = KE + PE = Mω2 A2/2 = 2Mω2|ũ|2 (10.4.2)

Classical physicists believed that the energy E could have any value. Early in the
twentieth century Planck showed that the experimentally observed radiation spectra
could be explained by postulating that the energy of electromagnetic oscillators is
quantized in units of --hω. It is now believed that the energies of all harmonic oscillators
occur only in integer multiples of --hω as shown in Fig. 10.4.2 (n = 0, 1, 2, . . .):

E = 2Mω2|ũ|2 = n--hω → |ũ| =
√

n--h/2Mω (10.4.3)

Using Eq. (10.4.3) we can rewrite Eq. (10.4.1) as

u(t) =
√

--h

2Mω
(a exp[−iωt] + a∗ exp[+iωt]) (10.4.4)

where |a|2 = n = 0, 1, 2, . . .

Since the energy of the oscillator is an integer multiple of --hω, we can alternatively
visualize it as a single energy level of energy --hω into which we can put an integer
number ν = 0, 1, 2, . . . of particles called phonons (for electromagnetic oscillators the
particles are called photons). If the oscillator is in a state with an energy 4--hω we say
that four phonons are present. Vibrations too thus acquire a particulate character like
electrons. The difference is that electrons are Fermi particles, obeying the exclusion
principle. Consequently the number of particles nk that we can put into a given state k
is either zero or one. Phonons on the other hand are Bose particles that do not have any
exclusion principle. Any number of phonons can occupy a state. The greater the number
of particles ν, the greater the energy of the vibrations and hence the greater the amplitude
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Fig. 10.4.3 A crystal lattice as a mass and spring system.

of the oscillation a in Eq. (10.4.4). For coherent vibrations, the amplitudes a are com-
plex numbers with well-defined phases, but for thermal vibrations, there is no definite
phase.

What is the average number of phonons at a given temperature? For electrons we
know that the number of particles nk in a state k can be either 0 or 1 and that the average
value at equilibrium is given by the Fermi function (Eq. (1.1.1)). For phonons, the
number of particles ν for a particular vibrational mode can be any positive number and
the average value 〈n〉 at equilibrium is given by the Bose function:

〈n〉 = 1

exp(--hω/kBT ) − 1
(10.4.5)

I will not discuss the physical basis for this function (we did not disuss the Fermi
function either) but both the Bose and Fermi functions follow from the general principle
of equilibrium statistical mechanics stated in Eq. (3.4.5).

So what is the mean square amplitude of vibration at a temperature T? From
Eq. (10.4.3)

〈|ũ|2〉 = 〈n〉 --h/2Mω

showing that the vibration amplitude increases with the number of phonons and thus
can be expected to increase with temperature. At temperatures far below the melting
point, this amplitude should be a small fraction of the equilibrium bond length.

Phonons: We argued in Chapter 3 that a hydrogen molecule could be visualized as
two masses connected by a spring whose equilibrium length is equal to the hydrogen–
hydrogen bond length. Extending the same argument we could visualize a solid lattice
as a periodic array of masses connected by springs (Fig. 10.4.3).

How do we describe the vibrations of such a mass and spring array? One could
equate the total force exerted by the springs on an individual mass to its mass times
its acceleration and write down an infinite set of equations, one for each mass. This
sounds like a complicated insoluble (non-quantum-mechanical) problem, but we will
show that it can be tackled in much the same way that we tackled the bandstructure
problem in Chapter 5.
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Fig. 10.4.4 (a) An infinite one-dimensional lattice of atoms. (b) Dispersion law ω/ω0 vs. βa.

1D solid: For simplicity, let us consider a one-dimensional array of atoms represented
by a mass and spring system (Fig. 10.4.4a). Assuming that um is the displacement of
the mth atom from its equilibrium position in the lattice, the force exerted on the mth
atom by the spring on the left is K(um − um−1), while that exerted by the spring on the
right is K(um − um+1). From Newton’s law,

M
d2um

dt2
= K [um+1 − 2um + um−1] (10.4.6)

where M is the mass of the atom. Assuming sinusoidal vibrations with frequency
um = ũm exp(−iωt) we can write

Mω2ũm = K [2ũm − ũm−1 − ũm+1]

which can be written in the form of a matrix equation:

ω2{ũ} = [�]{ũ} (10.4.7)

where ω0 ≡ √
K/M and

1 2 · · · · · · N − 1 N

1 2ω2
0 −ω2

0 0 −ω2
0

2 −ω2
0 2ω2

0 0 0

� = · · · · · ·
N − 1 0 0 2ω2

0 −ω2
0

N −ω2
0 0 −ω2

0 2ω2
0

Here we have used periodic boundary conditions, that is, we have assumed the solid
to be in the form of a ring with atom N connected back to atom 1. Note that this



279 10.4 Supplementary notes: phonons

matrix has exactly the same form as the Hamiltonian matrix for a one-dimensional
solid (Eq. (5.1.1)).

The similarity is of course purely mathematical. Equations (5.1.1) and (10.4.7)
describe very different physics: the former describes the quantum mechanics of elec-
trons in a periodic lattice, while the latter describes the classical dynamics of a periodic
mass and spring system. But since the matrix [H] in Eq. (5.1.1) has exactly the same
form as the matrix [�] in Eq. (10.4.7) they can be diagonalized in exactly the same
way to obtain (cf. Eq. (5.1.2)):

ω2 = 2ω2
0(1 − cos βa) where βa = n2π/N (10.4.8)

The values of βa run from −π to +π and are spaced by 2π/N , just like the values of
ka in Fig. 5.1.2. The eigendisplacements ũm corresponding to a given eigenmode β are
given by

∑
β

ũβ exp[iβma] =
∑

β

uβ exp[βma − ω(β)t]

The actual instantaneous values of the displacement are obtained by taking the real
parts of these phasor amplitudes (just as we do with voltages and currents in ac
circuits):

um(t) = 2Re

{∑
β

uβ exp[i(βma − ω(β)t)]

}

=
∑

β

uβ exp[i(βma − ω(β)t)] + u∗
β exp[−i(βma − ω(β)t)] (10.4.9)

What exactly the normal mode amplitudes uβ are depends on the history of how the
lattice was excited. But the point is that any arbitrary displacement pattern um(t)
in the lattice can be expressed as a superposition of normal modes as expressed in
Eq. (10.4.9) with an appropriate choice of the normal mode amplitudes uβ .

Optical phonons: We saw earlier that with two atoms per unit cell (see Fig. 5.1.4), the
E(k) plot acquires two branches (see Fig. 5.1.5). A similar effect is obtained for the
dispersion ω(β) of vibrational modes too. Consider a lattice with two distinct masses
M1,2 and/or spring constants K1,2 per unit cell as shown in Fig. 10.4.5a. Application of
Newton’s law now yields

ω2{ũ} = [�]{ũ} (10.4.10)

where ω1 ≡ √
K1/M1, ω2 ≡ √

K2/M2, M1,2 and K1,2 being the two masses and the
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Fig. 10.4.5 (a) Snapshot of a GaAs lattice viewed along the (111) direction. (b) Dispersion law
ω/ω1 vs. βa showing acoustic and optical phonons assuming ω2 = √

2ω1.

two spring constants, and

1 2 3 4

1 ω2
1 + ω2

2 −ω2
1 0 0 · · ·

2 −ω2
1 ω2

1 + ω2
2 −ω2

2 0 · · ·
� = 3 0 −ω2

2 ω2
1 + ω2

2 −ω2
1 · · ·

4 0 0 −ω2
1 ω2

1 + ω2
2 · · ·

· · · · · ·
· · · · · ·

Note that this looks just like Eq. (5.1.6) and its eigenvalues can be obtained using the
same method to yield (cf. Eq. (5.1.10)):[

ω2
1 + ω2

2 ω2
1 + ω2

2e−iβa

ω2
1 + ω2

2e+iβa ω2
1 + ω2

2

] {
u1(t)

u2(t)

}
= ω2(β)

{
u1(t)

u2(t)

}
(10.4.11)

Setting the determinant to zero[
ω2

1 + ω2
2 − ω2 ω2

1 + ω2
2e−iβa

ω2
1 + ω2

2e+iβa ω2
1 + ω2

2 − ω2

]
= 0

we obtain the dispersion relation

ω2(β) = ω2
1 + ω2

2 ± (
ω4

1 + ω4
2 + 2ω2

1ω
2
2 cos βa

)1/2
(10.4.12)
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Like Eq. (5.1.10), Eq. (10.4.12) leads to two branches in the phonon spectrum as
shown in Fig. 5.4.5b (cf. Fig. 5.1.5). The lower branch is called the acoustic phonon
branch since it corresponds to ordinary acoustic waves at low frequencies. The dis-
placement of both atoms in a unit cell (Ga and As) have the same sign for the acoustic
branch. By contrast their displacements have opposite signs for the optical branch. The
name “optical” comes from the fact that these vibrations can be excited by an incident
electromagnetic radiation whose electric field sets the Ga and the As atoms moving in
opposite directions, since one is negatively charged and one is positively charged.

It is easy to see why ω increases with β for the acoustic branch, but is nearly constant
for the optical branch. We know that the resonant frequency of a mass and spring system
increases as the spring gets stiffer. An acoustic mode with a small β results in very little
stretching of the springs because all the atoms tend to move together. So the springs
appear less stiff for smaller β, leading to a lower frequency ω. But with optical modes,
the distortion of the springs is nearly independent of β. Even if β is zero the Ga and
As atoms move against each other, distorting the springs significantly. The frequency
ω thus changes very little with β.

Three-dimensional solids: In real three-dimensional solids, the displacement is actu-
ally a vector with three components: ux, uy, uz for each of the two atoms in a unit cell.
This leads to six branches in the dispersion curves, three acoustic and three optical. One
of the three is a longitudinal mode with a displacement along the vector �β, while the
other two are transverse modes with displacements perpendicular to �β. We thus have a
longitudinal acoustic (LA) mode, two transverse acoustic (TA) modes, one longitudinal
optical (LO) mode, and two transverse optical (TO) modes. The overall displacement
at a point (�r , t) can be written in the form (�r denotes the position vector of the different
points of the lattice)

{�u(�r , t)} =
∑
ν, �β

{uν, �β} exp[i( �β · �r − ων(β)t)] + {uν, �β}∗ exp[−i( �β · �r − ων(β)t)]

(10.4.13)

Here the index ν runs over the six branches of the dispersion curve (LA, TA, etc.)
and {uν, �β} are the (6 × 1) eigenvectors of the (6 × 6) eigenvalue equation obtained by
generalizing Eq. (10.4.9) to include three components for each of the two displacement
vectors. We could write the displacements as (2 × 1) eigenvectors one for each the three
polarizations ν̂:

{�u(�r , t)}ν = ν̂
∑

�β
{u �β}ν exp[i( �β · �r − ων(β)t)] + {u �β}∗ν exp[−i( �β · �r − ων(β)t)]

(10.4.14)

The two components represent the displacements of the two atoms in a unit cell.
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Following the same arguments as we used to arrive at Eq. (10.4.4) we can write

{u �β}ν = ν̂

√
--h

2ρ�ω
aν, �β

(
u1

u2

)
(10.4.15)

where (u1, u2) is equal to (1, 1) /
√

2 for acoustic phonons and to (1, −1) /
√

2 for optical
phonons. The square of the amplitude is the number of phonons occupying the mode,
whose average value is given by the Bose–Einstein factor:

|aν, �β |2 = nν, �β 〈nν, �β〉 = 1

exp(--hων(β)/kBT ) − 1
(10.4.16)

From Eqs. (10.4.14)–(10.4.16), the mean squared displacement of an atom due to
phonons can be written as

〈u2〉 =
∑

�β

--h

2ρω�

1

exp(--hω/kBT ) − 1
(10.4.17)

Strain due to a single phonon: Let us obtain the result we stated earlier in
Eq. (10.1.16). The longitudinal strain is defined as the divergence of the displacement:

S = �∇ · �u =∑
�β

�β · ν̂
√ --h

2ρω�

(
a �β,ν̂ exp[i( �β · �r −ων(β)t)] + a∗

�β,ν̂
exp[−i( �β · �r −ων(β)t)]

)
For a single phonon with wavevector �β and polarization ν̂, we can set a �β,ν̂ = 1, so that

S = (ν̂ · �β)
√

2--h/ρω� cos( �β · �r − ω(β)t)

as stated in Eq. (10.1.16).

EXERCISES
E.10.1. Assume that that the electron velocity is --hk/m and the sound velocity is
cs. Evaluate Eqs. (10.2.16a, b) by: (a) converting the summation into an integral;
(b) expressing the argument of the delta function in the form

δ

( --h2kβ

m

[
cos θ − c

--hk/m
± β

2k

])
(c) performing the integral over cos θ to get rid of the delta function and set a finite range
to the limits of the integral over β: βmin < β < βmax; (d) performing the integral over
β. Show that the lifetime due to acoustic phonon absorption and emission is given by

1

τ (k)
= m D2kBT

π --h3ρc2
s

k

(e) What is the angular distribution of the emitted phonons?

E.10.2. Consider an electron in a state �k in a parabolic band with mass m having an
energy E that exceeds the optical phonon energy --hω0. Equating the argument of the



283 Exercises

delta function in Eq. (10.1.13) to zero, obtain an expression relating the magnitude of
the wavevector β of an emitted optical phonon to the angle θ at which it is emitted
(measured from �k as shown in Fig. E.10.2). What is the range of values of θ outside
which no optical phonons are emitted?

q  
   b  

k 

Fig. E.10.2

E.10.3. The mean squared displacement of an atom due to phonons is given in
Eq. (10.4.17) as

〈u2〉 =
∑

�β

--h

2ρω�

1

exp(--hω/kBT ) − 1

Convert the summation into an integral using periodic boundary conditions and evaluate
the integral numerically to plot

√
〈u2〉 vs. T over the range 0 K < T < 1000 K. Assume

acoustic phonons with ωβ = csβ (cs = 5 × 103 m/s) and ρs = 5 × 103 kg/m3.

E.10.4. This book is focused on quantum transport and as such we have not discussed
optical processes, except in passing in terms of its effect on electron transport. How-
ever, it is interesting to see how optical processes can be mapped onto corresponding
transport problems so that we can make use of the ideas developed in this book (this is
not commonly done, to my knowledge). Consider for example, an optical absorption
process that takes electrons from the valence to the conduction band. Conceptually we
could view this as an elastic transport process from a valence band state with N photons
to a conduction band state with (N–1) photons as shown below (K is the matrix element
for absorption given in Eq. (10.1.20a)):

D Ev ( )

D Ec ( )

hω
Dc (E − hw)

D Ev ( )

K
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Explain why the rate at which photons are absorbed per second can be written as

Rabs = 1

2πh

∫
dE T (E)[ fv(E) − fc(E)]

where the “transmission” can be conveniently calculated from the alternative expression
given in Exercise E.9.3:

T (E) = Trace[A1 M A2 M+]

by identifying the spectral functions A1 and A2 with the density of states 2πDv(E)
and 2πDc(E – --hω) in the two “contacts” and the matrix element M with K given by
Eq. (10.1.20a) to obtain

Rabs = 2π

h

∫
dE |K |2 Dv(E)Dc(E − --hω)[ fv(E) − fc(E)]

E.10.5. Illustrative exercises on dissipative quantum transport can be found in
Chapter 11.



11 Atom to transistor

In Chapter 1, I used the generic structure shown in Fig. 11.1.1a (see Section 11.1.1)
to focus and motivate this book. We spent Chapters 2 through 7 understanding how to
write down a Hamiltonian matrix [H0] for the active region of the transistor structure
whose eigenvalues describe the allowed energy levels (see Fig. 11.1.1b). In Chapter 8,
I introduced the broadening [�1] and [�2] arising from the connection to the source
and drain contacts. In Chapter 9, I introduced the concepts needed to model the flow of
electrons, neglecting phase-breaking processes. In Chapter 10 we discussed the nature
and meaning of phase-breaking processes, and how the resulting inflow and outflow
of electrons is incorporated into a transport model. We now have the full “machinery”
needed to describe dissipative quantum transport within the self-consistent field model
(discussed in Chapter 3) which treats each electron as an independent particle moving
in an average potential U due to the other electrons. I should mention, however, that this
independent electron model misses what are referred to as “strong correlation effects”
(see Section 1.5) which are still poorly understood. To what extent such effects can be
incorporated into this model remains to be explored (see Appendix, Section A.5).

My purpose in this chapter is to summarize the machinery we have developed
(Section 11.1) and illustrate how it is applied to concrete problems. I believe these
examples will be useful as a starting point for readers who wish to use it to solve other
problems of their own. At the same time, I have chosen these examples in order to
illustrate conceptual issues that are of great importance in understanding the nature of
electrical resistance on an atomic scale, namely the emergence of Ohm’s law V = I R,
with R proportional to the length of a conductor (Section 11.2), the spatial distribution
of the reversible and irreversible heat associated with current flow (Section 11.3), and
finally the spatial distribution of the voltage drop (Section 11.4).

11.1 Quantum transport equations

Let me quickly summarize the general model for dissipative quantum transport that we
have discussed so far.

285
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Gn = G 	in G+ (11.1.1)

G = [E I − H0 − U − 	]−1 (11.1.2)

A = i[G − G+] � = i[	 − 	+] (11.1.3)

where

	in = 	in
1 + 	in

2 + 	in
s

	 = 	1 + 	2 + 	s (11.1.4)

These equations can be used to calculate the correlation function Gn and hence the
density matrix ρ whose diagonal elements give us the electron density:

ρ =
∫

dE Gn(E)/2π (11.1.5)

The current (per spin) at any terminal i can be calculated from

Ii = (q/--h)

+∞∫
−∞

dE Ĩi (E)/2π (11.1.6)

with

Ĩi = Trace
[
	in

i A
] − Trace[�i G

n] (11.1.7)

which is depicted in Fig. 11.1.1b in terms of an inflow (	in
i A) and an outflow (�i Gn)

for the generic structure shown in Fig. 11.1.1a.

Input parameters: To use these equations, we need a channel Hamiltonian [H0] and
the inscattering [	in] and broadening [�] functions. For the two contacts, these are
related:

	in
1 = �1 f1 and 	in

2 = �2 f2 (11.1.8)

and the broadening/self-energy for each contact can be determined from a knowledge
of the surface spectral function a, the surface Green’s function g of the contact, and the
matrices [τ ] describing the channel contact coupling:

� = τ a τ+ and 	 = τ g τ+ (11.1.9)

For all the numerical results presented in this chapter we will use the simple one-band
effective mass (equal to the free electron mass) model, both for the channel Hamiltonian
[H0] and for the contact self-energy functions 	1, 	2.

For the scattering “terminal,” unlike the contacts, there is no simple connection
between 	in

s and 	s (or �s). If the scattering process is essentially elastic (E ≈ E ± --hω),
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Fig. 11.1.1 (a) The generic transistor structure we used in the introduction to motivate this book.
(b) Inflow and outflow of electrons for the generic structure in (a).

then (see Eqs. (10.3.12)–(10.3.14))

	in
s (E) = D0Gn(E)

�s(E) = D0 A(E)

	s(E) = D0G(E) (11.1.10)

For general inelastic scattering processes (see Eqs. (10.3.8), (10.3.9))

	in
s (E) =

∞∫
0

d(--hω)

2π

(
Dem(--hω) · Gn(E + --hω)

+ Dab(--hω) · Gn(E − --hω)

)

�s(E) =
∞∫

0

d(--hω)

2π

(
Dem(--hω) · [Gp(E − --hω) + Gn(E + --hω)]

+ Dab(--hω) · [Gn(E − --hω) + Gp(E + --hω)]

)

but for our examples we will consider phonons with a single frequency ω0

	in
s (E) = Dem

0 Gn(E + --hω0) + Dab
0 Gn(E − --hω0)

�s(E) = Dem
0 [Gp(E − --hω0) + Gn(E + --hω0)]

+ Dab
0 [Gn(E − --hω0) + Gp(E + --hω0)] (11.1.11)
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and ignore the hermitian part of 	s(E) which is given by the Hilbert transform of �s(E).
Note that the inscattering and broadening functions in Eqs. (11.1.10) and (11.1.11)
depend on the correlation functions, unlike the coherent case. This complicates the
solution of the transport equations (Eqs. (11.1.1)–(11.1.7)), requiring in general an
iterative self-consistent solution.

Note that in Eqs. (11.1.10) and (11.1.11) we are treating the emission and absorption
tensors Dem and Dab as scalar parameters. The full tensorial forms can be found in Eqs.
(A.4.9) and (A.4.10) of the Appendix.

Diffusion equation: If the “phonon spectral function” D0 is just a constant times an
identity matrix, then it follows from Eq. (11.1.10) that 	in

s is a diagonal matrix with

	in
s (r, r ; E) = D0 Gn(r, r ; E)

For long conductors one can neglect the contacts and write Eq. (11.1.1) as
Gn = G 	in

s G+ so that the diagonal elements of the correlation function, which can
be identified with the electron density n(r ; E) = Gn(r, r ; E)/2π , obey the equation

n(r ; E) =
∑

r ′
D0|G(r, r ′; E)|2 n(r ′; E)

It can be shown that if the Green’s function varies slowly in space then this equation
reduces to the diffusion equation: ∇2n(r ; E) = 0 (Datta, 1990).

Transmission: In Chapter 9 we saw that the concept of transmission is a very useful
one and developed an expression for the current in terms of the transmission function
(see Eq. (9.1.9)). For quantum transport with dissipation, the concept is still useful
as a qualitative heuristic tool, but in general it is not possible to write down a simple
quantitative expression for the current in terms of the transmission function, because
there is no simple connection between 	in

s and �s, unlike the contacts where 	in
i = �i fi .

It is more convenient to calculate the current directly from Eq. (11.1.6) instead. We can
define an effective transmission by comparing Eq. (11.1.6) with Eq. (9.1.9)

T eff(E) = Ĩi (E)

f1(E) − f2(E)
= Trace

[
	in

i A
] − Trace[�i Gn]

f1 − f2
(11.1.12)

which can be a useful parameter to compare with coherent transport.

Self-consistent calculation: In general it is necessary to perform a self-consistent
solution of the transport equations with the “Poisson” equation, which accounts for
electron–electron interactions through a potential U (�r ) (see Fig. 11.1.2). We write
Poisson within quotes as a reminder that this part of the problem could include correc-
tions for correlation effects (see Chapter 3) in addition to standard electrostatics. This
aspect is commonly ignored (as we do in Sections 11.2 and 11.3) when calculating
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 Poisson  equation 

H0, U, Σ1, Σ2, Σs, µ1, µ2

ρ  Eqs.(11.1.1)–(11.1.5)

I   Eq.(11.1.6), (11.1.7)

→

→

ρ   →   U

Transport
equation

Fig. 11.1.2 In general, the transport problem has to be solved self-consistently with the “Poisson”
equation, which accounts for electron–electron interactions through the potential U.

“linear response” for bias voltages that are small compared to the thermal energy kBT
and/or the energy scale on which the density of states changes significantly. The cur-
rent is then independent of the precise spatial profile U (�r ) arising from the applied
drain voltage. But if we are interested in the shape of the current–voltage (I–V) char-
acteristics over a wide range of bias values as we are, for example, when calculating
the ON-current of a transistor (Section 11.4), then the potential profile is of crucial
importance as explained in Section 1.4.

A simple one-level example: In Chapter 1, we went through an example with just
one level so that the electron density and current could all be calculated from a rate
equation with a simple model for broadening. I then indicated that in general we need
a matrix version of this “scalar model” and that is what the rest of the book is about
(see Fig. 1.6.5).

Now that we have the full “matrix model” we have the machinery to do elaborate
calculations as we will illustrate in the rest of the chapter. But before getting into such
details, it is instructive to specialize to a one-level system with elastic phase-breaking
(Fig. 11.1.3) so that all the matrices reduce to pure numbers and the results are easily
worked out analytically. From Eqs. (11.1.1)–(11.1.4):

G(E) = (E − ε + (i�/2)) −1

A(E) = �

(E − ε) 2 + (�/2)2

� = �1 + �2 + D0 A

Gn(E) = 	in(E) A(E)/�

	in = �1 f1 + �2 f2 + D0Gn

Hence

Gn

A
= �1 f1 + �2 f2 + D0Gn

�1 + �2 + D0 A
= �1 f1 + �2 f2

�1 + �2
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Fig. 11.1.3

independent of the scattering strength D0. From Eqs. (11.1.6) and (11.1.7),

Ĩ s = D0Gn A − D0 AGn = 0

and

Ĩ 1 = �1 A( f1 − (Gn/A)) = �1�2 A

�1 + �2
( f1 − f2) = − Ĩ 2

so that

I = q

h

∫
dE

�1�2 A

�1 + �2
( f1 − f2)

showing that elastic phase-breaking of this sort in a one-level system has no effect on
the current, which is independent of D0.

Even for a one-level system, inelastic phase-breaking is a little more complicated
since the inscattering function 	in

s at energy E depends on the correlation function Gn

at other energies E + --hω (see Exercise E.11.6).

11.2 Physics of Ohm’s law

My objective in this section is to show how the general quantum transport equations
can be used to model conductors with phase-breaking processes. At the same time
these examples will help illustrate how an ultrashort ballistic conductor evolves into
a familiar macroscopic one obeying Ohm’s law, which states that the conductance is
directly proportional to the cross-sectional area S and inversely proportional to the
length L. In chapter 1 I noted that for a ballistic conductor it is easy to see why
the conductance should increase with S using elementary arguments. Now that we have
discussed the concept of subbands (see Chapter 6) we can make the argument more
precise. The conductance of a conductor increases with cross-sectional area because
the number of subbands available for conduction increases and for large conductors
this number is directly proportional to S.
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But why should the conductance decrease with length L? Indeed a ballistic conduc-
tor without scattering has a conductance that is independent of its length. But for long
conductors with scattering, the conductance decreases because the average transmis-
sion probability of electrons from the source to the drain decreases with the length of
the conductor. We saw in Chapter 9 that the conductance is proportional to the total
transmission T around the Fermi energy (see Eq. (9.4.4)), which can be expressed as
the product of the number of modes M and the average transmission probability per
mode T:

G = (2q2/h) T = (2q2/h)MT (Landauer formula) (11.2.1)

For large conductors, M ∼ S and T ∼ 1/L, leading to Ohm’s law: G ∼ S/L. And that
brings us to the question: why does the transmission probability decrease with length?

11.2.1 Classical transport

If we think of the electrons as classical particles, then it is easy to see why the transmis-
sion probability T ∼ 1/L. Consider a conductor consisting of two sections in series as
shown in Fig. 11.2.1. The first section has a transmission probability T1; the second has
a transmission probability T2. What is the probability T that an electron will transmit
through both? It is tempting to say that the answer is obviously T = T1T2, but that is
wrong. That is the probability that the electron will get through both sections in its first
attempt. But an electron turned back from section 2 on its first attempt has a probability
of T1T2R1R2 of getting through after two reflections as shown in the figure (R1 = 1 − T1

and R2 = 1 − T2).
We can sum up the probabilities for all the paths analytically to obtain

T = T1T2((R1 R2) + (R1 R2)2 + (R1 R2)3 + · · ·)

= T1T2

1 − R1 R2
= T1T2

T1 + T2 − T1T2

so that

1

T
= 1

T1
+ 1

T2
− 1 (11.2.2)

T1T2

…

T1T2 (R1R2)2

T1T2 R1R2
T1 = 1−R1 T2 = 1−R2

Fig. 11.2.1 Classical “addition” of the transmission probabilities for two successive sections to
obtain an overall transmission probability.
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This relation tells us the resulting transmission T if we cascade two sections with trans-
mission T1 and T2 respectively. From this relation we can derive a general expression
for the transmission T(L) of a section of length L by deducing what function satisfies
the relation:

1

T (L1 + L2)
= 1

T (L1)
+ 1

T (L2)
− 1

It is easy to check that the following function fits the bill

T = �

L + �
(11.2.3)

where � is a constant of the order of a mean free path, representing the length for which
the transmission probability is 0.5.

Equation (11.2.3) represents the transmission probability for classical particles as a
function of the length of a conductor. Combining with Eq. (11.2.1) we obtain

G = (2q2 M/h)
V

L + �

so that the resistance can be written as a constant interface resistance in series with a
“device” resistance that increases linearly with length as required by Ohm’s law:

1

G
= h

2q2 M
+ h

2q2 M

L

�
(11.2.4)

interface “device”
resistance resistance

Equation (11.2.4) suggests that the device conductance itself should be written as

G = 2q2 M

h

T

1 − T
(11.2.5)

which was the original form advocated by Landauer. Equation (11.2.5) yields a resis-
tance of zero as one might expect for a ballistic conductor (with T = 1), while
Eq. (11.2.1) yields a non-zero resistance whose physical meaning caused extensive
debate in the 1980s:

1/G = (h/2q2 M) 1/G = 0

Eq.(11.2.1) Eq. (11.2.5)

This non-zero resistance is now believed to represent the resistance associated with
the interfaces between a low-dimensional conductor with M subbands and two large
contacts with a very large number of subbands. In view of the fact that two-terminal
measurements measure the total resistance rather than the “device” resistance, the
present trend is to use Eq. (11.2.1) with the understanding that it includes the interface
resistance along with the device resistance. Four-terminal measurements, on the other
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hand, are typically interpreted on the basis of the multi-terminal Büttiker formula
discussed in Chapter 9.

11.2.2 Coherent transport (one subband)

We have seen that if we view electrons as classical particles we recover Ohm’s law,
together with a constant interface resistance in series. But is this true if we treat electrons
as quantum mechanical particles obeying the Schrödinger wave equation? The answer
is no! This is easy to check numerically if we calculate the transmission through a
device with one scatterer (A or B) and a device with two scatterers (A and B) as shown
in Fig. 11.2.2.

The transmission was calculated using the equations stated at the beginning of Section
11.2 with the phase-breaking terms (	s and 	in

s ) set equal to zero. Since we are dealing
with coherent transport, we could calculate the transmission directly from Eq. (9.1.10).
But it is better to use Eq. (11.1.12) since it is applicable to non-coherent transport and
can be used in our later examples as well.

The important message from the example shown in Fig. 11.2.2 is that the quan-
tum transmission through two scatterers does not follow a simple rule like the one we
obtained for the transmission for classical particles (Eq. (11.2.2)). The basic reason is
the interference between the two scatterers. If they are spaced by half a wavelength
the reflections from the two scatterers interfere constructively, leading to a dip in the
transmission. But if they are spaced by a quarter of a wavelength, the reflections interfere
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Fig. 11.2.2 (a) A short device with two scatterers, A and B. A discrete lattice with 40 sites
separated by a = 3 Å was used in the calculation along with an effective mass equal to the free
electron mass m. A small bias potential was assumed varying linearly from +5 meV to –5 meV
across the device. Each scatterer is represented by a potential of 0.5 eV at one lattice site.
(b) Transmission versus energy calculated with only one scatterer (A or B) and with both scatterers
(A and B).
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destructively, leading to a peak in the transmission. This shows up as large oscillations
in the transmission as a function of energy (which determines the de Broglie wave-
length of the electrons). Clearly then if we cascade two sections, we do not expect the
composite transmission to have an additive property as required by Ohm’s law. Indeed,
depending on the location of the Fermi energy, the transmission through two scatterers
could even exceed that through the individual scatterers. This could never happen with
classical particles that cannot have a higher probability of getting through two sections
than of getting through one. But this is a well-known phenomenon with waves due to
interference effects: light transmits better into a lens if we put an extra anti-reflection
coating on top. Similarly with electrons: one section could act as an anti-reflection coat-
ing for the next section, leading to greater transmission and hence a lower resistance
for two sections than for one!

11.2.3 Coherent transport (multiple subbands)

One could argue that this is really an artifact of a one-dimensional model whereby
electrons of a given energy have a single wavelength. By contrast, in a multi-moded
conductor, electrons of a given energy have many different values of k and hence many
different wavelengths (in the longitudinal direction), one for each mode, as shown in
Fig. 11.2.3.

As a result, we can expect interference effects to be diluted by the superposition of
many oscillations with multiple wavelengths. This is indeed true. Figure 11.2.4 shows
the transmission through a two-dimensional wire having a width of 75 Å and a length of
200 Å modeled with a discrete lattice of points spaced by 5 Å. Without any scatterer, the
transmission at any energy E is equal to the number of propagating modes M(E), which
increases in steps from four to six over the energy range shown. The transmission with
one scatterer (with a transverse profile as shown in Fig. 11.2.5) increases monotonically
with energy and we can deduce a semi-classical transmission for two scatterers using

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

k ( / nm ) 

E
 −

 E
c 

(e
V

)

Different k-values 
for given energy E 

Fig. 11.2.3



295 11.2 Physics of Ohm’s law

0 2 4 6 8
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

 Transmission
 

 E
ne

rg
y 

( 
eV

 )
 

 

One scatterer 
Two scatterers:

 
quantum No scatterer 

Two scatterers:

 semi-classical

 

Fig. 11.2.4 Transmission versus energy calculated for a wire with multiple subbands having no
scatterer, one scatterer, and two scatterers. Each scatterer has a maximum potential of 0.25 eV at the
center of the wire.

Fig. 11.2.5

Eq. (11.2.2) with T = T /M and noting that T2 ≈ T1

M

T
= 2M

T 1
− 1 → T = T 1

2 − (T 1/M)

It is apparent that the quantum transmission through two scatterers fluctuates around
this semi-classical result, the size of the fluctuation being of order one. Such fluctuations
in the conductance of narrow wires as a function of the gate voltage (which shifts the
Fermi energy relative to the levels) have been observed experimentally and are often
referred to as universal conductance fluctuations. Fluctuations have also been observed
as a function of the magnetic field, which changes the effective wavelength at a given
energy.
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Fig. 11.2.6 Transmission versus energy calculated for a wire with multiple subbands having two
scatterers with a maximum potential of 5 eV, 0.5 eV, and 0.25 eV. The dashed lines show the
semi-classical result for two scatterers deduced from the transmission through one scatterer.

Since the size of the fluctuation is of order one, the reader might wonder what happens
if the transmission falls below one. This will happen if the transmission probability T
per mode M is smaller than 1/M, so that the total transmission T = MT is less than
one. In Fig. 11.2.6 we show the calculated transmission as the strength of the scatterers
is increased from a maximum scattering potential of 0.25 to 5 eV. It is apparent that in
the latter case the conductance shows large peaks separated by ranges of energy where
the transmission becomes negligible, indicating a strong localization of the electronic
wavefunctions.

By contrast, with weaker scattering potentials when the semi-classical transmission
is larger than one, the quantum transmission shows fluctuations of order one around
the semi-classical result. With multiple scatterers, the average quantum transmission
turns out to be approximately one less than the semi-classical result. This is not at all
evident from Fig. 11.2.6 which only involves two scatterers. With a large number of
independent scatterers, it turns out that the backscattering per mode is enhanced by
(1/M) due to constructive interference leading to an equal decrease in the transmission
per mode and hence to a decrease of one in the total transmission. A magnetic field
destroys the constructive interference, causing an increase in the transmission which
has been experimentally observed as a negative magnetoresistance (reduction in the
resistance in a magnetic field) and is ascribed to this so-called weak localization effect.
The basic phenomenon involving a coherent increase in backscattering has also been
observed with electromagnetic waves in a number of different contexts unrelated to
electron transport.
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11.2.4 Quantum transport with dephasing

To summarize, as we make a wire longer the semi-classical transmission will decrease
in accordance with Ohm’s law and the quantum transmission will exhibit fluctuations
of the order of one around the semi-classical result. If we make any wire long enough,
we will reach a length for which the semi-classical transmission will be less than one
(see Eq. (11.2.3)):

T ≈ M�

L + �
< 1 if L > M�

The quantum transmission for a wire longer than the localization length (∼M�) will
show large fluctuations characteristic of the strong localization regime. It would seem
that even a copper wire, if it is long enough, will eventually enter this regime and cease
to obey anything resembling Ohm’s law! However, that is not what happens in real
life. Why?

The reason is that our observations are valid for phase-coherent conductors where
we do not have significant phase-breaking processes to dilute the quantum interference
effects. A wire will exhibit strong localization only if the localization length M� is
shorter than the phase-breaking length. Since this length is typically quite short espe-
cially at room temperature, there is little chance of a copper wire (with its enormous
number of modes M) ever entering this regime. Figure 11.2.7 shows the effective trans-
mission for a one-dimensional wire having two coherent scatterers, with and without
phase-breaking scattering. It is apparent that the interference effects are effectively
washed out by the presence of phase-breaking processes. Figure 11.2.8 shows that
a one-dimensional wire with only phase-breaking scatterers leads to Ohm’s-law-like
behavior as a function of length. Of course in this limit a full quantum transport model
is unnecessary. We could probably use a semi-classical model that neglects interference
effects altogether and treats electrons as particles. However, in general, we have both
coherent and phase-breaking scattering and the quantum transport model described in
Section 11.1 allows us to include both.

In these calculations we have assumed that the phase-breaking scatterers carry
negligible energy away (--hω → 0), so that we can use the simplified equations
(cf. Eqs. (11.1.10))

	in
s (E) = D0[Gn(E)] and 	s(E) = D0[G(E)] (11.2.6)

to evaluate the self-energy and inscattering functions. We are also assuming the scat-
tering to be diagonal in real space and uniformly distributed so that D0 is a constant
that we have set equal to 0.01 eV2 in Fig. 11.2.7 and to 0.05 eV2 in Fig. 11.2.8.
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Fig. 11.2.8 Normalized resistance (inverse transmission) as a function of length for a
one-dimensional wire with phase-breaking scattering only.

11.3 Where is the heat dissipated?

We have seen that with adequate amounts of phase-breaking scattering, the resistance
of a conductor increases linearly with length (Fig. 11.2.8) in accordance with Ohm’s
law. However, as the length tends to zero (ballistic conductor), the resistance tends to
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a constant representing the interface resistance associated with the interfaces between
the low-dimensional conductor and the three-dimensional contacts. But where does the
associated I2R loss (or the Joule heating) occur?

The answer to this question depends on the nature of the scattering process. The
point is that resistance comes from the loss of momentum associated with scattering
while the associated Joule heating comes from the loss of energy. For example, in Figs.
11.2.7 and 11.2.8 we have modeled the phase-breaking scattering as an elastic process,
neglecting any associated energy loss. This means that, in this model, no energy is
dissipated inside the device at all. Nonetheless this elastic scattering does give rise to a
resistance that obeys Ohm’s law because of the associated loss of momentum, not the
loss of phase. Indeed in small conductors, a significant fraction of the Joule heating
I2R associated with a resistor R could be dissipated in the contacts rather than in the
conductor itself. There is concrete evidence that this is true, allowing experimentalists
to pump far more current through small conductors than what would be needed to
destroy them if all the heat were dissipated inside them.

The fact that elastic scattering is not associated with any energy loss can be seen by
noting at the normalized current per unit energy Ĩi (E) (see Eq. (11.1.6)) is identical at
each of the two terminals (source and drain) as shown in Fig. 11.3.1. The point is that
the energy current at any terminal is given by (cf. Eq. (11.1.6))

IE,i =
+∞∫

−∞
dE E Ĩi (E)/2π --h (11.3.1)

and if there is power (Pd) dissipated inside the device then it must be reflected as a
difference in the energy currents at the source and drain terminals:

Pd = IE,drain − IE,source (11.3.2)

Since current conservation requires the current to be the same at the source and the
drain, the energy currents can be different only if they are distributed differently as a
function of energy. Clearly there is no power dissipated in the device shown in Fig.
11.3.1, since the current has the same energy distribution at the source and drain. But
if we model the same device assuming that the scatterers have an associated phonon
energy of --hω = 20 meV, the energy distribution of the current is different at the source
and drain, showing that some fraction of the I2R loss occurs inside the device. Electrons,
on the average, enter the source at a higher energy than the energy at which they exit
the drain (Fig. 11.3.2).

11.3.1 “Peltier” effect

It is interesting to note that power need not be dissipated everywhere. In an inhomo-
geneous device there could be local regions where energy is absorbed by the electrons
and the solid is locally cooled. Consider, for example, a one-dimensional current with a
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Fig. 11.3.1 Normalized current per unit energy Ĩi (E) in a one-dimensional wire with
phase-breaking elastic scattering.
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Fig. 11.3.2 Normalized current per unit energy Ĩi (E) in a one-dimensional wire with inelastic
scattering by phonons with energy --hω = 20 meV (D0 = 0.1 eV2). The drain current flows at a lower
energy than the source current due to the energy relaxation inside the device.

potential step in the center that forces the current to flow at a higher energy at the drain
terminal than at the source terminal (Fig. 11.3.3). It is easy to see from Eq. (11.3.2) that
the junction is cooled by the flow of current, which can be considered a microscopic
version of the well-known Peltier effect where an electrical current cools one junction
at the expense of another. Indeed if we had a potential barrier with an upstep followed
by a downstep, then the upstep would be cooled while the downstep would be heated.
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Fig. 11.3.3 Normalized current per unit energy E in a one-dimensional wire with inelastic
scattering by phonons with energy --hω = 20 meV (D0 = 0.1 eV2), having a potential step in the
middle as shown. The drain current flows at a higher energy than the source current, indicating that
the device is cooled by the flow of current.

This aspect of the energy exchange is reversible and is proportional to the current,
unlike the irreversible Joule heating which is proportional to the square of the current
(Lake and Datta, 1992b).

11.4 Where is the voltage drop?

In Section 11.1 I stressed the importance of doing quantum transport calculations
self-consistently with the “Poisson” equation (see Fig. 11.1.2) for the self-consistent
potential U representing the effect of the other electrons. This is particularly impor-
tant when calculating the current under a “large” applied voltage: the shape of the
current–voltage characteristic can sometimes be significantly different depending on
the potential profile (or the “voltage drop”) inside the channel. For example, in deter-
mining the maximum (or the ON) current of a transistor it is important to know where
the voltage drops.

Consider a “nanotransistor” composed of a narrow quantum wire labeled the “chan-
nel” (see Fig. 11.4.1) of radius a surrounded by a coaxial gate of radius b which is
used to induce electrons in the channel as we discussed in Chapter 7. Assume that the
electrons in the channel belong to a single subband with a parabolic dispersion relation

E = Ec + (--h2k2/2m) (11.4.1)

At equilibrium, with µ2 = µ1 and low temperatures (T → 0 K) the density of electrons
(per unit length) in the channel can be written as (see Table 6.2.1 with an extra factor
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Fig. 11.4.1 A nanotransistor consisting of a quantum wire channel surrounded by a coaxial gate
used to induce electrons in the channel.

of two to account for two spins)

nL = 2
√

2m(µ1 − Ec)/π --h (11.4.2)

If we make the gate voltage VG more positive, it will induce more electrons in the
channel, while if we make it more negative it will deplete the channel of electrons, in
much the same way that we discussed in Section 7.3, except that in Chapter 7 we were
talking primarily about a flat two-dimensional conductor, while now we are talking
about a cylindrical one-dimensional conductor. In Chapter 7 we discussed only the
equilibrium problem with µ2 = µ1. The problem I wish to discuss now is a non-
equilibrium one. A voltage VD is applied to the drain relative to the source making,
µ2 = µ1 – qVD. What is the current I? Formally we can calculate by following the
self-consistent procedure depicted in Fig. 11.1.2 and numerical results are shown later
(Fig. 11.4.4). But first let us try to understand the physics in simple terms.

Ballistic nanotransistor: We will start with a ballistic transistor (no scattering) having
perfect contacts. If the contacts are good and there is no scattering we would expect the
low-bias conductance to be equal to twice (for spin) the conductance quantum:

I = (2q2/h)VD (11.4.3a)

The +k states are filled up from the left contact with an electrochemical potential µ1

while the −k states are filled from the right contact with an electrochemical potential
µ2. In the energy range between µ1 and µ2 (plus a few kBT on either side) the +k states
are nearly filled and carry current, but this current is not balanced by the −k states since
they are nearly empty. Since a 1D wire carries a current of (2q/h) per unit energy, there
is a net current given by (2q/h) times the energy range (µ1 − µ2) which is equal to
(2q2/h)VD as stated above.

Once µ2 has dropped below the bottom of the band (Ec), the current cannot increase
any further and we expect the ON-current to be given by

I (L)
ON = (2q2/h)(µ1 − Ec) (11.4.3b)
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Fig. 11.4.2 An applied voltage lowers the energy levels and the electrochemical potential in
the drain region. The +k states are occupied from the source up to µ1 while the –k states are
occupied from the drain up to µ2, causing a net current to flow as discussed in Chapter 6 (see
Section 6.3).

Equations (11.4.3a, b) suggest that the current should increase linearly with voltage
and then level off as the voltage approaches (µ1 − Ec). It is indeed true that the current
increases linearly and then saturates but, depending on the electrostatics, the ON-current
could be much larger, up to four times as large as that given by Eq. (11.4.3b), which
we have labeled with (L) to denote the Laplace limit. Let me explain what I mean by
that and what the other limit is.

The result given in Eq. (11.4.3b) is based on the picture shown in Fig. 11.4.2, which
assumes that the only effect of the increasing drain voltage is to lower µ2, while the
energy levels in the channel remain fixed relative to the source. However, depending on
the electrostatics, it is possible that the potential energy U in the channel would drop
by some fraction of the drain potential −qVD, thus lowering the bottom of the band
and increasing the ON-current to (note that U is a negative quantity for positive drain
voltages)

ION = (2q2/h)(µ1 − Ec − U ) (11.4.4)

(I am assuming that U remains less than �, see Fig. 11.4.2.) So in estimating the
ON-current, the all-important question is “How does the voltage drop?” The source is
at zero, the drain is at −qVD: what is the potential energy U inside the channel?

In general we determine the channel potential from a self-consistent solution of the
electrostatics and the transport problems. For our present problem we can write the
electrostatics in the form

U = UL + (q2/CE)δnL (11.4.5)

where CE is the capacitance per unit length of a coaxial capacitor with inner and outer
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 U = 0
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Fig. 11.4.3 Same as Fig. 11.4.2 except that the equilibrium conduction band profile has been
subtracted off. This plot shows just the change U in the potential under an applied bias. Inside the
channel, the two extreme possibilities are the Laplace potential UL and the neutral potential UN as
explained in the text.

radii equal to aand b respectively:

CE = 2πεrε0/ ln(b/a) (11.4.6)

δnL is the change in the electron density per unit length and UL is the solution to
corresponding to δnL = 0, sometimes called the Laplace solution, which is shown in
Fig. 11.4.3. Since the potential is applied only to the drain and not the gate the Laplace
potential has the shape shown in Fig. 11.4.3. It is essentially equal to the source potential
throughout the channel and rapidly changes to the drain potential at the other end; how
rapidly depends on the closeness of the gate to the channel.

The actual potential inside the channel is close to the Laplace limit if the electrostatic
capacitance CE is large: the second term in Eq. (11.4.5) then is negligible. This is the
case when we assume a very “high-K” dielectric with εr = 100 (see Eq. (11.4.6) with b
set equal to 2a). But when we use a smaller εr = 2, the current increases significantly
by nearly a factor of two (Fig. 11.4.4).

If the capacitance is even smaller, then in principle we could be in the other limit
where δnL → 0, but the second term is finite. We call this the neutral limit and the
corresponding potential the neutral potential UN (see Section 7.3). What is UN? We can
write the electron density in the ON-state as

[nL]ON =
√

2m(µ1 − Ec − U )/π --h (11.4.7)

since the potential energy U (which is negative) moves the bottom of the band down
to Ec + U, but we lose a factor of two because only half the states (having +k) are
occupied. Subtracting Eq. (11.4.7) from (11.4.2) we write the change in the electron
density as

δnL = (
√

2m/π --h)(2
√

µ1 − Ec −
√

µ1 − Ec − U ) (11.4.8)

Setting δnL = 0, we obtain the neutral potential:

2
√

µ1 − Ec =
√

µ1 − Ec − UN → µ1 − Ec − UN = 4(µ1 − Ec) (11.4.9)
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Fig. 11.4.4 Current (I) vs. drain voltage (VD) for a ballistic quantum wire transistor, for different
values of the capacitance CE. Also shown (crosses) is the Laplace limit with U = UL. (Courtesy of
S. Salahuddin.)

which means that in the neutral limit the ON-current from Eq. (11.4.4) is four times
what we expect in the Laplace limit (cf. Eq. (11.4.3b))

I (N)
ON = (2q2/h)(µ1 − Ec − UN) = 4I (L)

ON (11.4.10)

I should note that the neutral limit of the ON-current need not always be four times the
Laplace limit. The factor of four is specific to the one-dimensional example considered
here arising from the fact that the electron density is proportional to the square root
of the energy (see Eq. (11.4.2)). For a two-dimensional sheet conductor, the electron
density increases linearly with energy and we can show that the neutral limit is two
times the Laplace limit. The important point is that there is a Laplace limit and a
neutral limit and the actual value could lie anywhere in between depending on the
capacitance CE.

Electrostatic boundary conditions: In Fig. 11.4.3 we have shown the potential U
approaching the asymptotic values of zero and −qVD set by the external voltage in the
source and drain regions respectively. It is common to assume that this statement will
be true if we make these regions long enough. However, it is important to note that if
the end regions are assumed ballistic then the potential may not reach the asymptotic
values, no matter how long we make these regions.

The reason is that in these conductive end regions the potential U will approach the
neutral value UN needed to make δnL = 0. Consider the region near the source, for
example. If the potential U were zero, δnL would be negative because a fraction of
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the density of states in this region is now occupied according to the electrochemical
potential µ2 in the drain. This fraction is described by the partial spectral function [A2]
that we discussed in Chapter 9. To keep δnL = 0, the neutral potential in this region
takes on a negative value (Fig. 11.4.5). This situation will not change if we simply
make the end regions longer. As long as they are ballistic, it can be shown that there
will be no change in the fraction of the density of states at one end that is controlled by
the contact at the other end. Consequently the neutral potential in the source region will
be less than the asymptotic value of zero and using a similar argument we can show
that in the drain region it will be more than the asymptotic value of −qVD.

The potential U will revert to the correct asymptotic values ±qV/2 only if a negligible
fraction of the density of states (or spectral function) at one end is controlled by the
contact at the other end. This can happen if there is enough scattering within the device
or if there is strong geometrical dilution at the contacts (M � N) (Fig. 11.4.6).

This means that in modeling near-ballistic devices without significant geometric
dilution at the contacts we should not fix the potential at the two ends to the usual
asymptotic values as we did in solving the capacitance problem (see Eq. (7.2.17)). One
solution is to use a zero-field boundary condition for the Poisson equation and let the
potential U develop self-consistently.

From a conceptual point of view, we could view the spatial profile of the neutral
potential UN (which may be different from the profile of the actual potential U) as an
indicator of the spatial distribution of the resistance. The neutral potential across any
ballistic region remains flat indicating zero resistance as we might intuitively expect.
Figure 11.4.5 shows that only a fraction of the applied voltage VD actually appears



307 11.4 Where is the voltage drop?

 

Bottom of 
conduction 

band 

Source

Drain

E 
A

B

Elastic

Inelastic

Fig. 11.4.7 Once an electron has lost sufficient energy through inelastic processes (point B) it
cannot be turned back towards the source and current is not reduced by further scattering. But if it
has not lost enough energy (point A) then backscattering to the source can occur.

between the two ends of the device, indicating that the resistance we calculate is only
partly due to the channel and the rest should be associated with the interface between
the narrow channel regions and the wide contact regions.

Nanotransistor with scattering: We expect the ON-current to be reduced by the
presence of scattering, since the transmission is now less than one by a factor
T = �/(L + �) (see Eq. (11.2.3)), which depends on the length of the channel rela-
tive to a mean free path. In practice, however, the ON-current is higher that what Eq.
(11.4.10) suggests, if the scattering processes are inelastic rather than elastic.

To understand why, we note that inelastic processes cause the electrons coming in
from the source to lose energy as they propagate towards the drain (see Fig. 11.4.7).
Once they have lost sufficient energy (indicated by point B) they cannot easily be turned
back towards the source any more, since there are no allowed states in the source at this
lower energy. Consequently, the electron proceeds to the drain and the current is not
reduced. But if the scattering processes are elastic then electrons do not relax in energy
(indicated by point A) and can be turned back towards the source with a reduction in the
current. This physics can be described approximately by replacing the device length L
in Eq. (11.2.3) with the inelastic energy relaxation length Li that an electron traverses
before it loses a few kBT of energy (large enough that coming back is near impossible)

T = �/(L i + �) (11.4.11)

This can make the actual ON-current much larger than what one might expect otherwise.
Even purely elastic scattering causes a similar increase in the ON-current in two-
dimensional conductors since it relaxes the longitudinal (directed from the source to
the drain) kinetic energy, although the total energy (longitudinal + transverse) remains
the same. Indeed, commercial transistors for many years now have shown ON-currents
that are within 50% of their ballistic value even though they may be over ten mean free
paths in length. The reason is that the energy relaxation length Li tends to be of the same
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order as the mean free path �, making the transmission probability approximately 0.5
regardless of the actual length of the channel.

My reason for bringing up this issue here is that this is another example of the
importance of the self-consistent potential profile in determining the current at large
bias voltages. For example, the effect just described would not arise if the potential
profile looked as shown in Fig. 11.4.8 since there would then be little room for energy
relaxation. It seems reasonable to expect that the actual magnitude of the effect in a real
device will depend on the potential profile that has to be calculated self-consistently as
indicated in Fig. 11.1.2. This is a point that is often overlooked because the transport
block in Fig. 11.1.2 is intellectually more demanding than the “Poisson” block and
tends to overshadow it in our mind. So it is worth remembering that in many problems,
like the ON-current of a nanotransistor, the Poisson block could well represent the key
“physics,” making the transport block just a “detail”!

EXERCISES
E.11.1. (a) Consider a short 1D channel with two scatterers, A and B, modeled with a
discrete lattice of 40 sites separated by a = 3 Å. Assume a small bias potential varying
linearly from +5 meV to –5 meV across the device. Each scatterer is represented by
a potential of 0.5 eV at one lattice site. Calculate the transmission versus energy with
one scatterer only (A or B) and with both scatterers (A and B) and compare with Fig.
11.2.2. (b) Repeat including elastic phase-breaking scattering processes as indicated in
Eq. (11.2.6) and compare with Fig. 11.2.7. (c) Plot the inverse transmission (at a fixed
energy of 0.1 eV) versus length for a 1D wire with elastic phase-breaking scattering
only and compare with Fig.11.2.8.

E.11.2. (a) Consider a multi-moded channel 75 Å wide and calculate the transmission
through one scatterer and through two scatterers assuming each scatterer to be rep-
resented by a triangular potential (with a maximum of 0.25 eV at the center) in the
transverse direction localized at one lattice plane in the longitudinal direction. Also,
plot the semi-classical result obtained for two scatterers using the result for one scat-
terer. Compare with Fig. 11.2.4. (b) Repeat for different strengths of the scattering
potential and compare with Fig. 11.2.6.
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E.11.3. (a) Consider a 1D channel with phase-breaking elastic scattering and plot the
current per unit energy as shown in Fig. 11.3.1. (b) Repeat for a channel with inelastic
scattering and compare with Fig. 11.3.2. (c) Repeat for a channel with a potential step
in the middle with inelastic scattering and compare with Fig. 11.3.3.

E.11.4. Calculate the current (I) versus drain voltage (VD) self-consistently for a ballistic
quantum wire nanotransistor and compare with Fig. 11.4.4.

E.11.5. Tunneling in the presence of phase-breaking: Calculate the inverse transmis-
sion at low drain voltage at E =µ for a conductor having its equilibrium electrochemical
potential µ located at 0.1 eV, with the conduction band edge in the contact at 0 eV and
that in the channel at 0.5 eV as shown in Fig. E.11.5a.

m = 0.1eV

E = 0 eV 

E = 0.5 eV 
L

0 2 4 6 8
0

1

2

3

4

5

6

7

 Length ( nm )  

 lo
g1

0 
( 

re
si

st
an

ce
 )

 

D0 = 2 eV2

D0 = 3 eV2

(a)

(b)

Fig. E.11.5

Transmission through the channel is by tunneling, so that the inverse transmission
varies exponentially with the length L of the barrier in the absence of phase-breaking
processes. Plot the logarithm of the inverse transmission (normalized resistance) as a
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function of the length for 1 nm < L < 7 nm with two different scattering strengths,
D0 = 2 eV2 and 3 eV2. You should obtain a plot like the one shown in Fig. E.11.5b.
Note that the expected exponential dependence of the resistance (linear dependence of
the logarithm of the resistance) does not hold at higher scattering strengths. See, for
example, Neofotistos et al. (1991).

E.11.6. Inelastic electron tunneling spectroscopy (IETS): At the end of Section
11.1, we looked at a simple one-level example with elastic phase-breaking scattering.
It is instructive to do the one-level example with inelastic scattering, which is more
complicated because different energies are coupled together. The basic equations are
just the ones listed in Section 11.1 where the various matrices are just scalar quantities
(or (1 × 1) matrices). The inscattering and broadening matrices are given by

γ in
s (E) =

∫
d(--hω)Dph(--hω)Gn(E + --hω)

and �s(E) =
∫

d(--hω)Dph(--hω)(Gn(E + --hω) + Gp(E − --hω))

where the “phonon” spectral function can be written as the sum of an emission term
(positive frequencies) and an absorption term (negative frequencies)

Dph(--hω) =
∑

i

Di[(Ni + 1)δ(--hω − --hωi ) + Niδ(--hω + --hωi )]

with Ni representing the number of phonons of frequency --hωi , and Di its coupling.

(a) I vs. V (b) dI/dV vs. V (c)  d2I/dV2 vs. V
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(a) Current (I), (b) conductance (dI/dV ) and (c) d2 I/dV 2 as a function of voltage calculated
without phonon scattering (dashed line) and with scattering by phonons (solid line) with two
distinct frequencies having slightly different coupling strengths (D1 = 0.5, --hω1 = 0.075 eV and
D2 = 0.7, --hω2 = 0.275 eV). Reproduced with permission from Datta (2004).

Calculate the current versus voltage (ignoring the self-consistent potential), assuming
that the energy level ε = 5 eV lies much above the equilibrium electrochemical potential
µ = 0, so that current flows by tunneling. You should obtain a plot as shown above.
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The current calculated without any phonon scattering (all Di = 0) and with phonon
scattering (D1 = 0.5, --hω1 = 0.075 eV and D2 = 0.7, --hω2 = 0.275 eV) shows no
discernible difference. The difference, however, shows up in the conductance dI/dV
where there is a discontinuity proportional to Di when the applied voltage equals the
phonon frequency --hω1. This discontinuity shows up as peaks in d2 I/dV 2 whose loca-
tion along the voltage axis corresponds to molecular vibration quanta, and this is the
basis of the field of inelastic electron tunneling spectroscopy (IETS) (see for example,
Wolf (1989)).

E.11.7. Spin-flip scattering: We saw at the end of Section 11.1 that elastic phase-
breaking has little effect on the current in a one-level system. But it can have significant
effect if we have two levels with very different couplings to the two contacts. Consider
an up-spin level connected to the left contact and a down-spin level connected to the
right contact so that

m2

m1

DrainSource

I

V

I

e

g1 g2

[H ] =
[

ε �

�∗ ε

]
, [�1] =

[
γ1 0
0 0

]
, [�2] =

[
0 0
0 γ2

]

(a) Obtain an expression for the transmission T̄ (E). Explain physically why it is zero
when � = 0.
(b) Assume � = 0 so that no current will flow if there is no scattering. Now assume
that there are elastic phase-breaking processes described by

∑
i j = ∑

k,l
Di jkl Gkl,∑in

i j = ∑
k,l

Di jkl Gn
kl . Calculate the current for a fixed small drain voltage as a function of

D0, assuming that the only non-zero elements of ‘D’ are (a) D1122 = D2211 = D0, and
(b) D1111 = D2222 = D0 (for further discussion see Datta (2005)).



12 Epilogue

I started this book with a “simple” problem: two contacts are made to a really small
object having just one energy level in the energy range of interest. A voltage V is applied
between the contacts so that their electrochemical potentials separate, µ1 − µ2 = qV
(see Fig. 1.2.2). What is the current? We saw that this question could be answered
on the basis of two equations describing the current flow at the two interfaces (See
Eqs. (1.2.3a, 1.2.3b)), provided we included the broadening of the energy levels that
accompanies the process of coupling.

The essential point behind these equations is that there is an outflow from the contact
and an inflow from the contact (Fig. 12.1) whose difference equals the rate at which
the number of electrons changes:

--h
dN

dt
+ γ N︸︷︷︸

Outflow

= γ f︸︷︷︸
Inflow

(12.1)

In Chapters 8 and 9 we discussed a quantum mechanical treatment of this problem
based on the one-electron Schrödinger equation

i--h
dψ

dt
− Hψ − 	ψ︸︷︷︸

Outflow

= S︸︷︷︸
Inflow

(12.2)

with an additional self-energy term 	ψ and a source term S that give rise to outflow
and inflow respectively ((Eq. (8.2) in Chapter 8 can be viewed as the Fourier transform
of this equation). Traditional quantum mechanics courses focus on the Hamiltonian
[H] describing the internal dynamics of electrons in a closed system, just as we did in
Chapters 2 through 7 of this book. But from Chapter 8 onwards we have been discussing
different aspects of inflow and outflow, since it is so central to the problem of electron
transport. The quantum transport equations summarized in Section 11.1express the
inflow and outflow in terms of the correlation functions of the quantities appearing in
Eq. (12.2): Gn ∼ ψψ+, 	in ∼ SS+, etc., which are represented by matrices.

These equations provide the bridge from the atom to the transistor: both a con-
ceptual bridge and a quantitative bridge that connects the reversible microscopic world
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described by the Hamiltonian [H] to the irreversible macroscopic world with its currents
and dissipative flows. The problem of describing irreversible processes starting from
reversible laws is indeed one of the deeper recurring problems of physics which has
been widely discussed in the literature. A detailed discussion would take us too far
afield but let me try to say a few words about classical transport that may help put the
problem of quantum transport in perspective. I will write the relevant equations in one
dimension to make them look less forbidding to beginners, but it is straightforward to
generalize them to three dimensions.

Langevin equation: Classical mechanics is based on Newton’s law m(dv/dt) = F(t),
which describes frictionless motion (like that of the planets around the Sun) very well
but it has to be supplemented with a frictional force γ v in order to describe the motion
of everyday objects (like cars)

m
dv

dt
+ γ v = F(t)

This relation suggests that the velocity approaches zero once all external forces F(t)
are removed, which is not exactly true since microscopic objects in equilibrium want
to jiggle around with an average kinetic energy of kBT/2 per degree of freedom. This
jiggling is not noticeable for cars, but quite significant for electrons or even for large
molecules (so-called Brownian motion, for example). To include it in the equation of
motion we need to add a random force N(t)

m
dv

dt
+ γ v = F(t) + N (t) (12.3)

thereby turning Newton’s law into a stochastic differential equation, sometimes called
the Langevin equation. With an appropriate choice of the statistical properties of N(t)
and the frictional coefficient γ , one can describe irreversible transport processes like
that of electrons in solids. Indeed, the drift–diffusion equations widely used to model



314 Epilogue

semiconductor devices can be viewed as the collective version of the one-particle
equation (12.3). Let me briefly explain what I mean by “collective version.”

Boltzmann equation: In the one-particle approach we track the position x(t) and veloc-
ity v(t) of individual particles. In the collective approach, x and v are independent vari-
ables and we define a distribution function f(x, v, t) that tells us the average number of
particles having a velocity v at the point x. It can be shown that the one-particle relations

dx/dt = v(t) and m(dv/dt) = F(t)

can equivalently be written in collective terms as (see, for example, Lundstrom (1997))

∂ f

∂t
+ F

m

∂ f

∂v
+ v

∂ f

∂x
= 0

The stochastic force N(t) and the frictional term γ v can both be included by treating
these as processes that take electrons from one value of v to another, thus resulting in
an inscattering Sin and an outscattering Sout at each point in phase space (x, v):

∂ f

∂t
+ F

m

∂ f

∂v
+ v

∂ f

∂x
= Sin − Sout (12.4)

This is the celebrated Boltzmann equation (1D version, readily generalized to 3D),
which is widely used today to describe the transport of diverse entities including neu-
trons and electrons. The drift–diffusion equations are obtained from Eq. (12.4) by taking
its “first moment,” that is by multiplying by v and summing over all v.

Modern versions of this approach, often referred to as semi-classical transport theory,
take bandstructure into account by modifying Newton’s laws to read

dx/dt = v → dx/dt = (1/--h)∂ E/∂k ≡ v

m(dv/dt) = F → --hdk/dt = F

For parabolic bands with E = --h2k2/2m∗, the two forms are equivalent with the free
electron mass m replaced by the effective mass m∗. For non-parabolic bands the two
versions are not equivalent and the modified version (in terms of k) can be shown to be
the correct one. The corresponding modified Boltzmann equation for f (x, k, t) (rather
than f (x, v, t)) is given by

∂ f

∂t
+ F

h

∂ f

∂k
+ v

∂ f

∂x
= Sin − Sout (12.5)

“Arrow” of time: The functional dependence of Sin and Sout on the distribution func-
tion f can be selected to reflect different kinds of scattering, such as impurity scattering
or phonon scattering or electron–electron scattering. In general, however, they have the
property that the equilibrium distribution function f0(E) with E = U (x) + ε(k) gives
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no net inscattering or outscattering: Sin − Sout = 0. This ensures that feq = f0 (E) with
E = U (x) + ε(k) is a solution to the Boltzmann equation since (note that F = −dU/dx)

∂ feq/∂t = 0

∂ feq/∂k = (d f0/dE)(∂E/∂k) = (d f0/dE)hv

∂ feq/∂x = (d f0/dE)(∂E/∂x) = −(d f0/dE)F

so that
∂ feq

∂t
+ F

h

∂ feq

∂k
+ v

∂ feq

∂x
= 0

It is believed that arbitrary initial distributions will eventually relax to the state feq(x, k)
in agreement with what is generally observed. This property defines a preferred direction
(or “arrow”) in time: non-equilibrium distributions always evolve into equilibrium
distributions and never the other way around.

By contrast, if we were to write a set of N coupled equations for a set of N interacting
particles

m
d2xn

dt2
= m

dVn

dt
− ∂

∂xn
Uint(x1, . . . , xN ) (12.6)

(Uint represents the interaction energy so that its negative gradient with respect to xn

gives the force felt by particle n), the solutions would have no preferred direction in
time. If we were to videotape the time evolution of any solution to Eq. (12.6) and play
it backwards, it would not look wrong, for t can be replaced by −t without changing
the equation. But a videotaped solution of the Boltzmann equation would look absurd
if played backwards: instead of seeing a highly non-equilibrium distribution evolve
towards an equilibrium distribution, we would see the reverse, which is completely at
odds with experience.

Boltzmann was strongly criticized by many in his day who argued that an equation
like Eq. (12.5) with a preferred direction in time cannot be equivalent to a time-reversible
one like Eq. (12.6). It is now believed that with a sufficiently large number of particles
Eq. (12.6) too will exhibit behavior similar to that predicted by the Boltzmann equa-
tion, at least on practical time scales shorter than what is called the recurrence time
(see, for example McQuarrie (1976) and references therein). But this is by no means
obvious and many profound papers continue to be written on the subject, which I will
not go into. The point I am trying to make is that it is difficult to have the equilibrium
solution emerge purely out of Newton’s law (Eq. (12.6)). Boltzmann bypassed these
complexities simply by a proper choice of the scattering functions, often called the
“Stosszahlansatz” which ignores subtle correlations in the velocities of different par-
ticles. In the field of quantum transport too, one would expect significant difficulty in
making the correct equilibrium solutions emerge purely from the Schrödinger equation
(or even a multiparticle Schrödinger equation like Eq. (3.2.1)). It seems natural then
to look for ways to do for the Schrödinger equation what Boltzmann did for Newton’s
law.
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Quantum Boltzmann equation: Indeed this is exactly what the non-equilibrium
Green’s function (NEGF) formalism initiated by the works of Schwinger, Baym,
Kadanoff, and Keldysh (see Kadanoff and Baym, 1962; Keldysh, 1965; Martin and
Schwinger, 1959), sought to do. The basic quantity is the correlation function (gener-
ally written in the literature as −iG<(x, x ′; t, t ′))

Gn(x, x ′; t, t ′) ≡ 〈ψ+(x ′, t ′)ψ(x, t)〉
which plays a role analogous to the distribution function f(x, k, t) in Boltzmann theory.
For steady-state transport the correlation function depends only on the difference time
coordinate (t − t′) whose Fourier transform is the energy coordinate E that we have
used throughout the book. Note that the quantum formalism has one extra dimension
(x, x′, E) relative to the Boltzmann formalism (x, k), in addition to the time coordinate.
This is because the Boltzmann formalism assumes “k” states to be eigenstates, so that “k”
and “E” are uniquely related. In the general quantum formalism such an assumption is
not warranted. For further discussion of this point and related issues such as the Wigner
transformation, see for example, section 8.8 of Datta (1995).

Landauer model: Work on electron transport (quantum or otherwise) before the 1980s
was focused largely on the problem of electron–electron / electron–phonon / electron–
impurity interactions and how they introduce irreversibility, dissipation, and ultimately
electrical resistance. Contacts back then were viewed as minor experimental distrac-
tions. But this changed in the 1980s when experiments in mesoscopic physics revealed
the important role played by contacts and a different model introduced by Landauer
gained increasing popularity. In this model, the conductor itself is assumed to be a wire
free of all interactions: irreversibility and dissipation arise from the connection to the
contacts. This model seems relevant to the modeling of electronic devices as they scale
down to atomic dimensions. At the same time it serves to illustrate the microscopic
nature of resistance in its simplest context, one that we can call coherent transport
(Chapter 9).

In this book I have used an even simpler version of this model as our starting point:
a really small object (rather than a quantum wire) connected to two large contacts.
Indeed Eq. (12.1), introduced in Chapter 1, can be viewed as a special version of the
Boltzmann equation applied to a system so small that the distribution function is a single
number N. The contacts are held in local equilibrium by irreversible interactions whose
complex dynamics is completely bypassed simply by legislating that the inscattering
and outscattering terms have the particularly simple forms: Sin = γ f1 and Sout = γ N
which ensure that the equilibrium solution is the correct one with N = f1. This is
somewhat in the spirit of Boltzmann, who bypassed complex Newtonian dynamics
with his inspired ansatz regarding the nature of Sin and Sout. In Chapter 9 we developed
this model into a full coherent transport model (equivalent to Landauer’s) and then
introduced dissipation in Chapter 10 to obtain the complete equations for dissipative
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quantum transport (for weak interactions), which are summarized and illustrated with
examples in Chapter 11.

Beyond coherent transport: Overall, I have tried to combine the physical insights
from the Landauer approach with the power of the NEGF formalism, which I believe is
needed to extend quantum transport models beyond the coherent regime. For example,
I have stated earlier that the self-energy term 	ψ in Eq. (12.2) represents the outflow of
the electrons and it is natural to ask if 	 (whose imaginary part gives the broadening or
the inverse lifetime) should depend on whether the final state (to which outflow occurs)
is empty or full. As I stated in Chapter 1 and later in Chapter 9, such exclusion principle
factors do not appear as long as purely coherent processes are involved. But as we saw
in Chapter 10, they do arise for non-coherent interactions in a non-obvious way that
is hard to rationalize from the one-electron picture that we have been using. A proper
description requires us to go beyond this picture.

In the one-electron picture, individual electrons are described by a one-electron
wavefunction ψ and the electron density is obtained by summing ψ∗ψ from different
electrons. A more comprehensive viewpoint describes the electrons in terms of field
operators c such that c+c is the number operator which can take on one of two val-
ues, 0 or 1, indicating whether a state is empty or full. These field operators are often
referred to as “second quantized” operators, implying that the passage from a particulate
Newtonian viewpoint to a wavelike Schrödinger viewpoint is the “first quantization”
(a term that is seldom used). Second quantization completes the formalism by incor-
porating both the particulate view and the wavelike view.

It can be shown that these operators obey differential equations

i--h
d

dt
c − Hc − 	c = S (12.7)

that look much like the ones we have been using to describe one-electron wavefunc-
tions (see Eq. (12.2)). But unlike ψ∗ψ , which can take on any value, operators like
c+c can only take on one of two values, 0 or 1, thereby reflecting a particulate aspect
that is missing from the Schrödinger equation. This advanced formalism is needed to
progress beyond coherent quantum transport to inelastic interactions and onto more
subtle many-electron phenomena like the Kondo effect, which is largely outside the
scope of this book. Indeed in strongly interacting systems it may be desirable to use
similar approaches to write transport equations, not for the bare electron described by
c, but for composite or dressed particles like polarons obtained through appropriate
unitary transformations. In the Appendix I have tried to introduce the reader to these
advanced concepts by rederiving our results from Chapters 8–10 (including the full
time-dependent form not discussed earlier) using the second quantized formalism and
showing how it can be used to to treat Coulomb blockade and the Kondo resonance
arising from strong electron–electron interactions. This last phenomenon has been
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experimentally observed, but is inaccessible on the basis of the simple one-particle pic-
ture. As the field of nanoelectronics continues to progress, we can expect to discover
many such phenomena where contacts get modified in non-trivial ways through their
interactions with the channel and no longer function like simple reservoirs. As I men-
tioned in Section 8.4, this includes not only the metallurgical contacts, but also phonons
and other “contact-like” entities represented by various self-energies [	]. It may then
be necessary to write separate equations to determine the state of each “contact.” Or
perhaps it will prove more useful to write a transport equation not for individual elec-
trons but for composite objects that include part of the “contact.” At this time we can
only speculate.

[ H + U]
µ1

Σ1[ ]

µ2

Σ2[ ]
‘s’

I V I

Σs[ ]

That is why I believe this field is currently at a very exciting stage where important
advances can be expected from both applied and basic points of view. On the one hand
we will continue to acquire a better quantitative understanding of nanoscale devices
based on different materials and geometry. Although many of the observations appear
to be described well within the basic self-consistent field model we have discussed,
much remains to be done in terms of discovering better basis functions for representing
the Hamiltonian [H] and self-energy [	], including inelastic scattering processes and
implementing more efficient algorithms for the solution of the quantum transport equa-
tions. At the same time we can hope to discover new quantum transport phenomena
(both steady-state and time-dependent) involving strong electron–phonon and electron–
electron interactions, which are largely unexplored. In this respect I believe what we
have seen so far represents only the “tip of the iceberg.” As experimentalists acquire
greater control of the degree of coupling between localized “channels” and delocalized
“contacts,” many more subtle quantum transport phenomena will be discovered, some
of which may even be useful! I hope the broad conceptual framework I have tried to
describe here will help the reader join, this small but active subset of what Feynman
called the “greatest adventure the human mind has ever begun” (Feynman, 1965).
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In developing the general “matrix” model depicted in Fig. 1.6.5b, our starting point
was the one-electron Schrüdinger equation

i--h
dψ

dt
− Hψ = 0 (A.1)

describing the time evolution of the one-electron wavefunction ψ from which the elec-
tron density is obtained by summing ψ∗ψ for different electrons. Although it is a little
tricky explaining exactly what one means by “different electrons,” this procedure is
adequate for dealing with simple problems involving coherent interactions where the
background remains unaffected by the flow of electrons. But to go beyond such phe-
nomena onto more complex processes involving phase-breaking interactions or strong
electron–electron interactions it is desirable to use a more comprehensive viewpoint
that describes the electrons in terms of field operators c. For non-interacting electrons
these second quantized operators obey differential equations

i--h
d

dt
c − Hc = 0 (A.2)

that look much like the one describing the one-electron wavefunction (see Eq. (A.1)).
But unlike ψ∗ψ , which can take on any value, the number operator c+c can only take
on one of two values, 0 or 1, thereby reflecting a particulate aspect that is missing from
the Schrüdinger equation. The two values of c+c indicate whether a state is full or
empty. At equilibrium, the average value of c+c for a one-electron state with energy
ε is given by the corresponding Fermi function 〈c+c〉 = f0(ε − µ). However, this is
true only if our channel consists of non-interacting electrons (perhaps with interactions
described by a self-consistent field) in equilibrium. For non-equilibrium problems, a
transport equation is needed that allows us to calculate c+c based on our knowledge of
the source terms from the contacts, which are assumed to remain locally in equilibrium
and hence described by the equilibrium relations.

In this Appendix, I will: introduce the field operators and define the correlation
functions in Section A.1; use these advanced concepts to rederive the expression
(Eq. (11.1.1)) for the non-equilibrium density matrix in Section A.2; rederive the
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expression for the current (Eq. (11.1.6)) in Section A.3; derive the inscattering and
broadening functions for incoherent processes (Eq. (11.1.11)) in Section A.4; and show
how the approach is extended to include strong electron–electron interactions leading
to Coulomb blockade and the Kondo resonance in Section A.5.

A.1 Correlation functions

Creation and annihilation operators: Consider a set of one-electron states labeled by
j. In the multi-electron picture, we have two states 0j and 1j for each such one-electron
state j. The creation operator c+

j inserts an electron in state j taking us from 0j to 1j and
can be represented in the form

0 j 1 j

c j (t) =
[

0 1
0 0

]
exp(−iε j t/--h) (A.1.1a)

1j

0j

cj cj
+

while the annihilation operator cj represented by

c+
j (t) =

[
0 0
1 0

]
exp(+iε j t/--h) (A.1.1b)

takes an electron out of state j taking us from 1j to 0j. It is straightforward to show
that

0 j 1 j

c+
j (t) c j (t) =

[
0 0
0 1

] 0 j 1 j

c j (t)c
+
j (t) =

[
1 0
0 0

]

independent of the time t. The former is called the number operator since its eigenvalues
0 and 1 represent the number of electrons in the corresponding state, while the latter
tells us the number of empty states. Their expectation values are interpreted as the
number of electrons and the number of holes in state j:

〈c+
j (t) c j (t)〉 = f j and 〈c j (t) c+

j (t)〉 = 1 − f j (A.1.2)
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It can be checked that

c j (t) c+
j (t) + c+

j (t) c j (t) = 1

c j (t) c j (t) = 0

c+
j (t) c+

j (t) = 0

What is much less intuitive is the relation between the field operators for two different
states i and j:

ci (t) c+
j (t) + c+

j (t) ci (t) = δ i j (A.1.3a)

ci (t) c j (t) + c j (t) ci (t) = 0 (A.1.3b)

c+
i (t) c+

j (t) + c+
j (t) c+

i (t) = 0 (A.1.3c)

Ordinarily we would expect the operators for two distinct states to be independent of
each other, so that for i �= j, ci (t) c+

j (t) = c+
j (t) ci (t). Equation (A.1.3a) would then

imply that each is equal to zero. However, due to the exclusion principle, two distinct
states are not really independent and ci (t) c+

j (t) = −c+
j (t) ci (t). We can show that this

is ensured if we modify Eqs. (A.1.1) to read

c j (t) =
[

0 (−1)ν

0 0

]
exp(−iε j t/--h)

and

c+
j (t) =

[
0 0
(−1)ν 0

]
exp(+iε j t/--h)

ν being the number of occupied states to the “left” of state j. This means that when
dealing with a number of one-electron states, we need to agree on a specific order
(it does not matter what order we choose) and stick to it, so that “left” has a well-
defined meaning throughout the calculation. In practice, however, we do not need
to worry about this, since we will be manipulating the operators making use of the
algebra described by Eqs. (A.1.3). I just want to point out that this algebra, which is
an expression of the exclusion principle, implies that putting an electron in state j is
affected by the presence or absence of another electron in state i, even before we have
included any interactions between electrons.

Correlation and spectral functions: In general we can define a two-time electron
correlation function

Gn
i j (t, t ′) ≡ 〈c+

j (t ′) ci (t)〉 ≡ −iG<
i j (t, t ′) (A.1.4a)

and a two-time hole correlation function

Gp
i j (t, t ′) ≡ 〈ci (t) c+

j (t ′)〉 ≡ +iG>
i j (t, t ′) (A.1.4b)
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whose values for equal time t′ = t give us the number operators in Eq. (A.1.2). Their
sum is defined as the spectral function:

Ai j (t, t ′) ≡ Gp
i j (t, t ′) + Gn

i j (t, t ′) = i
[
G>

i j (t, t ′) − G<
i j (t, t ′)

]
(A.1.4c)

Fourier transformed functions: Under steady-state conditions the correlation func-
tions depend only on the difference between the two time coordinates and it is convenient
to work with the Fourier transformed functions: (t − t′) → E:

Gn
i j (E) ≡

+∞∫
−∞

(dτ/--h) exp(iEτ/--h)Gn
i j (t, t − τ ) (A.1.5a)

The inverse transform is given by

Gn
i j (t, t − τ ) ≡ 〈c+

j (t − τ ) ci (t)〉

=
+∞∫

−∞
(dE/2π ) Gn

i j (E) exp(−iEτ/--h) (A.1.5b)

so that the equal-time correlation function can be written as

Gn
i j (t, t) ≡ 〈c+

j (t) ci (t)〉 =
+∞∫

−∞
(dE/2π )Gn

i j (E) (A.1.6)

Similar relations hold for the hole correlation function Gp and the spectral function A.

Equilibrium: In general the electron and hole correlation functions can take on any
value so long as they add up to give the spectral function as indicated in Eq. (A.1.4c).
But at equilibrium, the former is proportional to the Fermi function so that (I am using
lower case symbols to indicate equilibrium quantities)

gn
i j (E) = ai j (E) f0(E − µ) (A.1.7a)

gp
i j (E) = ai j (E) (1 − f0(E − µ)) (A.1.7b)

For an isolated system described by a Hamiltonian [h], the spectral function is written
down easily in the eigenstate representation

ars(E) = δrsδ(E − εr) (A.1.7c)

where r, s are the eigenstates of [h], so that

gn
rs(E) = δrsδ(E − εr) fr, with fr ≡ f0(εr − µ) (A.1.8a)

gn
rs(t, t ′) = δrs fr exp[−iεr (t − t ′)/--h] exp(−η | t − t ′| /--h) (A.1.8b)
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η being a positive infinitesimal. Our general approach is to use these relations with the
appropriate Fermi functions for the contacts and then calculate the resulting correlation
functions in the region of interest, namely the channel.

Boson operators: In discussing problems that involve phonon or photon emission,
we will need to include operators b+

α , bα describing the phonon/photon fields. These
operators obey a somewhat different algebra:

bβ(t) b+
α (t) − b+

α (t) bβ(t) = δαβ (A.1.9a)

bα(t) bβ(t) − bβ(t) bα(t) = 0 (A.1.9b)

b+
α (t) b+

β (t) − b+
β (t) b+

α (t) = 0 (A.1.9c)

where α, β are the different phonon/photon modes. Comparing with Eqs. (A.1.3) for
the electron operators, it is easy to see that the difference lies in replacing a positive
sign with a negative one. However, this “minor” change makes these operators far more
intuitive since distinct modes α �= β now function independently

bβ(t) b+
α (t) = b+

α (t) bβ(t), α �= β

as “common sense” would dictate. Indeed, readers who have taken a course in quan-
tum mechanics will recognize that in an operator treatment of the harmonic oscillator
problem, one defines creation and annihilation operators that are linear combinations
of the position (x) and momentum (p) operators that obey precisely the same algebra as
in Eqs. (A.1.9). What this means is that, unlike electron operators, we could represent
the phonon/photon operators using ordinary differential operators. However, in this
Appendix we will not really use any representation. We will simply manipulate these
operators making use of the algebra described in Eqs. (A.1.9). One consequence of this
change in the algebra is that instead of Eq. (A.1.2) we have

〈b+
α (t) bα(t)〉 = Nα and 〈bα(t) b+

α (t)〉 = 1 + Nα (A.1.10)

where Nα is the number of phonons. As with the electron operators (see Eqs. (A.1.4)),
we can define two-time correlation functions

Gab
αβ(t, t ′) ≡ 〈b+

β (t ′) bα(t)〉 (A.1.11a)

and

Gem
αβ (t, t ′) ≡ 〈bα(t)b+

β (t ′)〉 (A.1.11b)

which we have labeled with “ab” and “em” (instead of “n” and “p” for electrons),
which stand for absorption and emission respectively. Under steady-state conditions
these functions depend only on (t − t ′), which can be Fourier transformed to yield
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frequency domain correlation functions. At equilibrium (cf. Eqs. (A.1.7))

gab
αβ (--hω) = aph

αβ(--hω)N (--hω)

gem
αβ (--hω) = aph

αβ(--hω)(1 + N (--hω)) (A.1.12)

where the Fermi function has been replaced by the Bose function:

N (--hω) = [exp(--hω/kBT ) − 1]−1 (A.1.13)

and the phonon spectral function in the eigenmode representation is given by

aph
αβ(--hω) = δαβδ(--hω − --hωα) (A.1.14)

so that

gab
αβ(E) = δαβδ(--hω − --hωα) Nα with Nα ≡ N (--hωα)

gab
αβ (t, t ′) = δαβ Nα exp[−iω (t − t ′)] exp(−η| t − t ′ | /--h) (A.1.15)

and

gem
αβ (E) = δαβδ(--hω − --hωα) (Nα + 1)

gem
αβ (t, t ′) = δαβ(Nα + 1) exp[−iω(t − t ′)] exp(−η | t − t ′ | /--h)

Energy–time relationship: The next point to note is that the wavefunction ψ(t) and
the field operator c(t) are not observable quantities. What is observable are correlation
functions like ψ∗(t ′) ψ(t) or c+(t ′) c(t), in somewhat the same way that the noise voltage
V(t) across a resistor is described by its correlation function V(t′)V(t). Under steady-
state conditions, such two-time correlation functions depend only on time differences
(t − t ′) and the corresponding Fourier transform variable is the energy E. For example,
an electron with a wavefunction ψ(t) = ψ0 exp(−iεt/--h) has a correlation function of
the form

ψ∗(t ′) ψ(t) = ψ∗
0 ψ0 exp[−iε(t − t ′)/--h]

and the Fourier transform with respect to (t − t′) is proportional to the delta function
δ(E − ε) at E = ε. Steady-state phenomena can be described in terms of such Fourier
transformed quantities with E as an independent variable, as we have been doing fol-
lowing the introduction of broadening in Section 1.3. In each of the following sections, I
will first derive expressions in the time domain and then Fourier transform with respect
to (t − t ′) to obtain energy domain expressions suitable for steady-state analysis.

A.2 Non-equilibrium density matrix

Partitioning: Operators obeying Eqs. (A.1.9) are generally referred to as Boson oper-
ators while those obeying Eqs. (A.1.3) are referred to as Fermion operators. At
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µ

Contact

cr ci

Channel 

Fig. A.2.1

equilibrium, the corresponding correlation functions are given by Eqs. (A.1.8) and
(A.1.15) respectively. The problem is to calculate them in the channel driven away
from equilibrium and our strategy will be to assume that the channel is driven by
the contacts and by the phonon/photon baths that are maintained in their respective
equilibrium states by the environment.

To implement this procedure, we partition the overall structure into a part that is of
interest (labeled channel) and a reservoir (labeled contact) having a large continuous
density of states (Fig. A.2.1). We start from the equations describing the composite
system:

i--h
d

dt

{
ci

cr

}
=

[
εi τir

[τ+] ri εr

] {
ci

cr

}
(A.2.1)

and obtain an effective equation for the channel of the form stated in Eq. (12.7), elim-
inating the reservoir variables r (i and r are assumed to represent eigenstates of the
isolated channel and reservoir respectively) by assuming that they are maintained
in equilibrium by the environment so that the corresponding fields are described by
Eqs. (A.1.7). In this section let me illustrate the approach assuming that the coupling
with the contact involves purely elastic interactions, just as we assumed in our dis-
cussion of coherent transport in Chapters 8 and 9. As we will see, the mathematics
in this case will look just as if the quantities c are ordinary complex numbers like the
wavefunctions we have been using. We will not really need to make use of the fact that
these are Fermion operators. However, in subsequent sections we will discuss more
general problems involving electron–phonon and electron–electron interactions, where
we will make use of the properties of Fermion and Boson operators to obtain results
that would be hard to rationalize from a one-electron picture.

Eliminating the reservoir variables: The contact subset of Eq. (A.2.1) yields (note:
[τ+]r j = τ ∗

jr )

i--h
d

dt
cr = (εr − iη)cr +

∑
j

τ ∗
jr c j + Sr (A.2.2)
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µ

Isolated
contact

Cr ci

Channel 

Fig. A.2.2

after adding an infinitesimal imaginary part η to the energy and a source term Sr

following the same arguments that we used in Eq. (8.1.8a). We can write the solution
for the reservoir field in the form

cr (t) = Cr (t)︸ ︷︷ ︸
Isolated

+
∑

j

+∞∫
−∞

dt1grr (t, t1)τ ∗
jr c j (t1)

︸ ︷︷ ︸
contact Channel-induced

(A.2.3)

where

grr (t, t ′) = (1/i--h)ϑ (t − t ′) exp(−iεr − η)(t − t ′) (A.2.4)

represents the Green’s function (or “impulse response”) of the differential operator
appearing in Eq. (A.2.2):

Lr grr (t, t ′) = δ(t − t ′)

with

Lr ≡ i--h
d

dt
− (εr − iη) (A.2.5)

and Cr(t) is the solution to the homogeneous equation: Lr Cr (t) = Sr .
Physically, Cr(t) represents the field operator in the isolated contact (Fig. A.2.2)

before connecting to the channel at t = 0. This allows us to use the law of equilibrium
(see Eqs. (A.1.8a, b)) to write down the corresponding correlation function ( fr ≡
f0(εr − µ)):

gn
rs (E) = δrsδ (E − εr ) fr (A.2.6a)

gn
rs (t, t ′) ≡ 〈C+

s (t ′) Cr (t)〉
= δrs fr exp[−iεr (t − t ′)] exp(−η|t − t ′|) (A.2.6b)

The channel itself is assumed to be completely empty prior to t = 0 and is filled by
the electrons “spilling over” from the contact after the connection is established at t = 0.
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This process is described by starting from the channel subset of Eq. (A.2.1):

i--h
d

dt
ci = εi ci +

∑
j

τ ir cr

and substituting for cr(t) from Eq. (A.2.3):

i--h
d

dt
ci − εi ci −

∑
j

+∞∫
−∞

dt1	i j (t, t1) c j (t1) = Si (t) (A.2.7)

where

	i j (t, t ′) ≡
∑

r

τ ir grr (t, t ′)τ ∗
jr (A.2.8)

and

Si (t) ≡
∑

r

τir Cr (t) (A.2.9)

Equation relating correlation functions: Defining a Green’s function for the integro-
differential operator appearing in Eq. (A.2.7):

i--h
d

dt
Gik(t, t ′) − εi Gik(t, t ′) −

∑
j

+∞∫
−∞

dt1	i j (t, t1) G jk(t1, t ′) = δikδ (t − t ′)

we can write the solution to Eq. (A.2.7) in the form

ci (t) =
∑

k

+∞∫
−∞

dt1 Gik(t, t1)Sk(t1) (A.2.10)

so that the correlation function is given by

Gn
i j (t, t ′) ≡ 〈c+

j (t ′) ci (t)〉

=
∑
k,l

+∞∫
−∞

dt1

+∞∫
−∞

dt2 Gik(t, t1)G∗
jl(t

′, t2)〈S+
l (t2) Sk(t1)〉

Defining

	in
kl (t1, t2) ≡ 〈S+

l (t2) Sk(t1)〉 (A.2.11)

and

[G+]l j (t2, t ′) ≡ [G]∗jl(t
′, t2) (A.2.12)

we can write in matrix notation:

[Gn(t, t ′)] =
+∞∫

−∞
dt1

+∞∫
−∞

dt2 [G(t, t1)][	in(t1, t2)][G+(t2, t ′)] (A.2.13)
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where

L[G(t, t ′)] = [I ]δ(t − t ′)

with

L ≡ i--h
d

dt
[I ] − [h] −

+∞∫
−∞

dt1 [	(t, t1)] (A.2.14)

[	(t, t ′)] ≡ [τ ][g(t, t ′)][τ+] (A.2.15)

[h] being the Hamiltonian describing the isolated channel whose eigenstates are labeled
by i. Equation (A.2.13) relates the correlation function in the channel to the inscattering
function 	in describing the correlation of the source term.

Under steady-state conditions, all functions depend only on the difference between
the two time coordinates so that the time integrals in Eq. (A.2.13) represent convolutions
that turn into ordinary products if we Fourier transform with respect to the difference
coordinate:

[Gn(E)] ≡ [G(E)][	in(E)][G+(E)] (A.2.16)

with

L[G(E)] = [I ]

L ≡ E[I ] − [h] − [	(E)] (A.2.17)

[	(E)] ≡ [τ ][G(E)][τ+] (A.2.18)

Inscattering function: To evaluate the inscattering function

	in
i j (t, t ′) ≡ 〈S+

j (t ′) Si (t)〉
we substitute for the source term from Eq. (A.2.9)

	in
i j (t, t ′) =

∑
s

τ ∗
js

∑
r

τir 〈C+
s (t ′) Cr (t)〉

=
∑
r,s

τir gn
rs(t, t ′)τ ∗

js

where gn
rs(t, t′) is given by Eq. (A.2.6) since it represents the correlation function for

the isolated contact in equilibrium if it were not connected to the channel. In matrix
notation

[	in(t, t ′)] = [τ ][gn(t, t ′)][τ+] (A.2.19)

Once again, since this correlation function depends only on the difference between
the two time arguments, we can Fourier transform with respect to the difference
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coordinate to write

[	in(E)] = [τ ][gn(E)][τ+] (A.2.20)

Inscattering vs. broadening: It is interesting to note that the anti-hermitian component
of the self-energy function (see Eq. (A.2.18)), also called the broadening function, is
given by

[�(E)] = i[	(E) − 	+(E)] = [τ ][a(E)][τ+]

where [a(E)] is the spectral function for the isolated contact: [a] = i[g − g+]. If the con-
tact is assumed to be in equilibrium with the Fermi function f(E), then the inscattering
function from Eq. (A.2.20) can be written as

[	in(E)] = [τ ][a(E)][τ+] f (E)

so that the inscattering and the corresponding broadening are related:

[	in(E)] = [�(E)] f (E) (A.2.21)

A.3 Inflow and outflow

We will now obtain an expression for the inflow and outflow, starting from the expression
for the current (note that 〈ci

+ci〉 tells us the number of electrons in state i)

I (t) ≡
∑

i

d

dt
〈c+

i (t) ci (t)〉

= 1

i--h

∑
i

〈
c+

i (t)

(
i--h

d

dt
ci (t)

)〉
−

〈 (
−i--h

d

dt
c+

i (t)

)
ci (t)

〉

and substitute from Eq. (A.2.7) to obtain explicit expressions for the inflow and outflow.
More generally we could define a two-time version I(t, t′) as

I (t, t ′) ≡
∑

i

(
d

dt
− d

dt ′

)
〈c+

i (t ′) ci (t)〉 (A.3.1)

whose “diagonal” elements (t = t′) give us the total current. The advantage of the two-
time version is that for steady-state transport we can Fourier transform with respect to
(t − t′) to obtain the energy spectrum of the current. Substituting from Eq. (A.2.7) into
Eq. (A.3.1) we obtain

I (t, t ′) = I in(t, t ′) − I out(t, t ′)
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where

I out(t, t ′)

= (−1/i--h)
∑
i, j

+∞∫
−∞

dt1(	i j (t, t1) 〈c+
i (t ′) c j (t1)〉 − 	∗

i j (t
′, t1) 〈c+

j (t1) ci (t)〉)

= (−1/i--h)
∑
i, j

+∞∫
−∞

dt1(	i j (t, t1) Gn
j i (t1, t ′) − 	∗

i j (t
′, t1) Gn

i j (t, t1))

and

I in(t, t ′) = (1/i--h)
∑

i

(c+
i (t ′) Si (t) − S+

i (t ′) ci (t))

= (1/i--h)
∑
i, j

+∞∫
−∞

dt1G∗
i j (t

′, t1) 〈S+
j (t1) Si (t)〉 − Gi j (t, t1) 〈S+

i (t ′) Sj (t1)〉

(making use of Eq. (A.2.10))

= (1/i--h)
∑
i, j

+∞∫
−∞

dt1G∗
i j (t

′, t1) 	in
i j (t, t1) − Gi j (t, t1) 	in

j i (t1, t ′)

(making use of Eq. (A.2.11))
In matrix notation we can write

I in(t, t ′) = (1/i--h) Trace

+∞∫
−∞

dt1[	in(t, t1)][G+(t1, t ′)] − [G(t, t1)][	in(t1, t ′)] (A.3.2)

I out(t, t ′) = (1/i--h) Trace

+∞∫
−∞

dt1[	(t, t1)][Gn(t1, t ′)] − [Gn(t, t1)][	+(t1, t ′)] (A.3.3)

Note that these are just the conduction currents to which one should add the displacement
currents to obtain the net terminal current.

Once again, under steady-state conditions each of the quantities depends only on the
difference between the two time arguments and on Fourier transforming with respect
to the difference coordinate the convolution turns into a normal product:

I in(E) = Trace[	in(E) G+(E) − G(E) 	in(E)]/i--h

= Trace[	in(E) A(E)]/--h (A.3.4)

I out(E) = Trace[Gn(E) 	+(E) − 	(E) Gn(E)]/i--h

= Trace[�(E) Gn(E)]/--h (A.3.5)
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Multi-terminal devices: We have now obtained the basic expressions for inflow
(Eq. (A.3.4)) and outflow (Eq. (A.3.5)) that we advertised in Fig. 1.6.5 along with an
equation for Gn (Eq. (A.2.16)). For simplicity we considered a channel connected to
just one contact, but the results can be readily extended to real devices with two or
more contacts labeled by indices p, q. For example, Eqs. (A.2.13–A.2.15) are modified
to read

[Gn(t, t ′)] =
∑

p

+∞∫
−∞

dt1

+∞∫
−∞

dt2 [G(t, t1)][	in(t1, t2)](p)[G+(t2, t ′)] (A.3.6)

where

L[G(t, t ′)] = [I ]δ(t − t ′)

with

L ≡ i--h
d

dt
[I ] − [h] −

∑
p

+∞∫
−∞

dt1[	(t, t1)](p) (A.3.7)

[	(t, t ′)](p) ≡ [τ ](p)[g(t, t ′)](p)[τ+](p) (A.3.8)

while Eqs. (A.2.19), (A.3.2) and (A.3.3) become

[	in(t, t ′)](p) = [τ ](p)[gn(t, t ′)](p)[τ+](p) (A.3.9)

I in(t, t ′)(p) = (1/i--h) Trace

+∞∫
−∞

dt1[	in(t, t1)](p)[G+(t1, t ′)] − [G(t, t1)][	in(t1, t ′)](p)

(A.3.10)

I out(t, t ′)(p) = (−1/i--h) Trace

+∞∫
−∞

dt1[	(t, t1)](p)[Gn(t1, t ′)] − [Gn(t, t1)][	+(t1, t ′)](p)

Under steady-state conditions the multi-terminal versions take the form

[Gn(E)] =
∑

p

[G(E)][	in(E)](p)[G+(E)] (A.3.11)

L[G] = [I ] L ≡ E[I ] − [h] −
∑

p

[	(E)](p) (A.3.12)

[	(E)](p) ≡ [τ ](p)[g(E)](p)[τ+](p) (A.3.13)

[	in(E)](p) = [τ ](p)[gn(E)](p)[τ+](p) (A.3.14)

I in(E)(p) = Trace[	in(E)](p)[A(E)]/--h (A.3.15)

I out(E)(p) = Trace[�(E)](p)[Gn(E)] (A.3.16)

The terminal current is given by the difference between the inflow and outflow:

I (E)(p) = (1/--h) Trace([	in(E)](p)[A(E)] − [�(E)](p)[Gn(E)])
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Making use of Eq. (A.3.10) and the relation

A =
∑

q

G�(q)G+ =
∑

q

G+�(q)G

(which follows from Eqs. (A.3.11) and (A.3.12)), we can write

I (E)(p) = (1/--h)
∑

q

Trace(	in(p)G�(q)G+ − �(p)G	in(q)G+)

= (1/--h)
∑

q

Trace[�(p)G�(q)G+]( f p − fq )

if 	in(p) = �(p) f p. We can then write the current as

I (E)(p) = (1/--h)
∑

q

T (pq)( f p − fq ) (A.3.17)

in terms of the transmission function:

T (pq) ≡ Trace[�(p)G�(q)G+] (A.3.18)

Linearizing Eq. (A.3.17) about the equilibrium electrochemical potential we obtain
the standard Büttiker equations (using δ to denote the change from the equilibrium
value)

δI (E)(p) = (1/--h)
∑

q

T (pq)(δµp − δµq ) (A.3.19)

widely used in mesoscopic physics (see Büttiker (1988) and Chapter 2 of Datta (1995)).

A.4 Inelastic flow

We have seen earlier (Fig. 10.3.1) that inelastic processes within the channel can be
understood by regarding the channel as its own contact. With this in mind, let us
consider a problem in which an electron can enter the channel from the contact by
emitting (creating) or absorbing (annihilating) a phonon (Fig. A.4.1).

Note that in general we cannot assume the “contact” to be in equilibrium since it
represents the channel itself, in other words, we should not make use of Eqs. (A.2.6).
We start with the equation of motion for a channel field operator:

i--h
d

dt
ci − εi ci = si

where

si =
∑
r,α

τirαcr bα + τ ∗
riαcr b+

α (A.4.1)
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µ

Contact

εi

Channel

ci

crb
+
α

crbα

Fig. A.4.1

Equations of motion of this type describing the time evolution of the field operators (in
the Heisenberg picture) are obtained using the Heisenberg equations of motion for any
operator P

i--hdP/dt = PH − HP

where H is the second quantized Hamiltonian:

H =
∑

i

εi c
+
i ci +

∑
r

εr c+
r cr +

∑
α

--hωα(b+
α bα + 1/2)

+
∑
i,r,α

(τirαc+
i cr bα + τ ∗

irαc+
r ci b

+
α + τriαc+

r ci bα + τ ∗
riαc+

i cr b+
α ) (A.4.2)

The electron–phonon interaction term (the last term in Eq. (A.4.2)) is obtained by
writing the potential U(x) felt by one electron due to the phonon mode α(τα(�x) is
similar to U ab

�β (�r ) in Eq. (10.1.17)):

U (�x) =
∑

α

bατα(�x) + b+
α τα(�x)+

and then writing the second quantized version as we would for any ordinary potential
U (�x):

Hel−ph =
∑
i,r

Uir ci
+cr + Uri c

+
r ci

We will now evaluate the two source terms in Eq. (A.4.1) one by one.

Evaluating cr bα: We start from the equations of motion for the individual electron
and phonon operators:

i--h
d

dt
cr = εr cr +

∑
i, α

τriαci bα + τ ∗
irα ci b

+
α

i--h
d

dt
bα = --hωαbα +

∑
i, r

τ ∗
riα c+

i cr + τ ∗
irα c+

r ci
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and write an equation for the product

i--h
d

dt
cr bα =

(
i--h

d

dt
cr

)
bα + cr

(
i--h

d

dt
bα

)

=
(

εr cr +
∑

j,β

τr jβ c j bβ + τ ∗
jrβ c j b

+
β

)
bα

+ cr

(
--hωαbα +

∑
j,s

(τ ∗
s jα c+

j cs + τ ∗
jsα c+

s c j )

)

which is simplified by replacing the products involving reservoir variables with their
average values (which are time-independent numbers) to obtain (note that 〈bβbα〉 = 0
and 〈cr cs〉 = 0)

i--h
d

dt
cr bα − (εr + --hωα)cr bα

=
∑

j

∑
s,β

τ ∗
jsβ(〈b+

β bα〉δrs + 〈cr c+
s 〉δαβ)c j

=
∑

j

∑
s,β

τ ∗
jsβ(〈b+

β bα〉〈c+
s cr 〉 + 〈cr c+

s 〉〈bαb+
β 〉)c j

For the last step we have made use of the relations δrs = c+
r cs + csc+

r (Eq. (A.1.3a))
and δαβ = bαb+

β − b+
β bα (Eq. (A.1.9a)).

As we did in Eq. (A.2.3), we can write the total solution as a sum of an isolated
solution and a response induced by the source term:

cr (t) bα(t) = Cr (t) Bα(t) +
+∞∫

−∞
dt1

∑
j

c j (t1)
∑
s , β

τ ∗
jsβgrα(t, t1)

× (〈b+
β (t1) bα(t1)〉〈c+

s (t1)cr (t1)〉 + 〈cr (t1)c+
s (t1)〉〈bα(t1)b+

β (t1)〉)
where

i--h
d

dt
grα(t, t1) − (εr − iη + --hωα)grα(t, t1) = δ(t − t1)

To lowest order, we can write cr (t) bα(t) ≈ grα(t, t1) cr (t1) bα(t1), so that

cr (t) bα(t) = Cr (t)Bα(t) +
+∞∫

−∞
dt1

∑
j

c j (t1)
∑
s,β

τ ∗
jsβ

× (〈b+
β (t1) bα(t)〉〈c+

s (t1) cr (t)〉 + 〈cr (t) c+
s (t1)〉〈bα(t) b+

β (t1)〉)

= Cr (t)Bα(t) +
+∞∫

−∞
dt1

∑
j

c j (t1)
∑
s,β

τ ∗
jsβ

× (
Gab

αβ(t, t1)Gn
rs(t, t1) + Gp

rs(t, t1)Gem
αβ (t, t1)

)
(A.4.3a)
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Evaluating cr b+
α : Now that we have evaluated crbα , the next step is to evaluate crbα

+.
With this in mind, we start from

i--h
d

dt
cr = εr cr +

∑
i,α

τriα ci bα + τ ∗
irα ci b

+
α

and

−i--h
d

dt
b+

α = --hωαb+
α +

∑
i,r

τirα c+
i cr + τriαcr+ci

and write an equation for the product

i--h
d

dt
cr b+

α =
(

i--h
d

dt
cr

)
b+

α − cr

(
−i--h

d

dt
b+

α

)

=
(

(εr − iη)cr +
∑
j,β

τr jβ c j bβ + τ ∗
jrβ c j b

+
β

)
b+

α

− cr

(
--hωαb+

α +
∑

j,s

(τ jsα c+
j cs + τs jαc+

s c j )

)

which is simplified by replacing the products involving reservoir variables with their
average values as before:

i--h
d

dt
cr b+

α − (εr − --hωα)cr b+
α =

∑
j

∑
s,β

τs jβ(〈 bβb+
α 〉δrs − 〈cr c+

s 〉δαβ)c j

=
∑

j

∑
s,β

τs jβ(〈bβb+
α 〉〈c+

s cr 〉 + 〈cr c+
s 〉〈b+

α bβ〉)c j

Once again we can write the solution as a sum of an isolated solution and a response
induced by the source term:

cr (t) b+
α (t) = Cr (t)B+

α (t) +
+∞∫

−∞
dt1

∑
j

c j (t1)
∑
s,β

τs jβgrα(t, t1)

× (〈bβ(t1) b+
α (t1) 〉〈c+

s (t1) cr (t1)〉 + 〈cr (t1) c+
s (t1)〉〈b+

α (t1) bβ(t1)〉)
where

i--h
d

dt
grα(t, t1) − (εr − iη − --hωα)grα(t, t1) = δ(t − t1)

Proceeding as before we write

cr (t)b+
α (t) ≈ Cr (t) B+

α (t) +
+∞∫

−∞
dt1

∑
j

c j (t1)
∑
s,β

τs jβ

× (〈bβ(t1) b+
α (t) 〉〈c+

s (t1) cr (t)〉 + 〈cr (t) c+
s (t1)〉〈b+

α (t) bβ(t1)〉)
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= Cr (t)B+
α (t) +

+∞∫
−∞

dt1
∑

j

c j (t1)
∑
s,β

τs jβ

× (
Gem

βα(t1, t)Gn
rs(t, t1) + Gp

rs(t, t1)Gab
βα(t1, t)

)
(A.4.3b)

Eliminating reservoir variables: Substituting Eqs. (A.4.3a, b) into Eq. (A.4.1) we
obtain an equation for the channel field (cf. Eqs. (A.2.7)–(A.2.9)):

i--h
d

dt
ci − εi ci −

∑
j

+∞∫
−∞

dt1	i j (t, t1) c j (t1) = Si (t) (A.4.4)

where

Si (t) ≡
∑
r,α

τ irαCr (t) Bα(t) + τ ∗
riαCr (t) B+

α (t) (A.4.5)

	i j (t, t1) ≡ ϑ(t − t1)�i j (t, t1) (A.4.6)

and

�i j (t, t1) =
∑

r,s,α,β

τirα τ ∗
jsβ

(
Gab

αβ(t, t1) Gn
rs(t, t1) + Gp

rs(t, t1) Gem
αβ (t, t1)

)
+ τs jβ τ ∗

riα

(
Gem

βα(t1, t) Gn
rs(t, t1) + Gp

rs(t, t1) Gab
βα(t1, t)

)
(A.4.7)

Inscattering function: We evaluate the inscattering function

	in
i j (t, t ′) ≡ 〈S+

j (t ′) Si (t)〉
as before by substituting for the source term from Eq. (A.4.5)

	in
i j (t, t ′) =

∑
r,s,α,β

τirα τ ∗
jsβ〈C+

s (t ′) Cr (t)〉〈B+
β (t ′)Bα(t)〉

+ τs jβ τ ∗
riα〈C+

s (t ′) Cr (t)〉〈Bβ(t ′)B+
α (t)〉

which yields

	in
i j (t, t ′) =

∑
r,s,α,β

τirα τ ∗
jsβGn

rs(t, t ′) Gab
αβ(t, t ′) + τs jβ τ ∗

riαGn
rs(t, t ′) Gem

βα(t ′, t) (A.4.8)

Steady state: Under steady-state conditions we Fourier transform with respect to the
difference time coordinate to obtain:

�i j (E) =
∞∫
0

d(--hω)/2π

×
∑

r,s,α,β

τirα τ ∗
jsβ

(
Gn

rs(E − --hω)Gab
αβ(--hω) + Gp

rs(E − --hω)Gem
αβ (--hω)

)
+τs jβ τ ∗

riα

(
Gn

rs(E + --hω)Gem
βα(--hω) + Gp

rs(E + --hω)Gab
βα(--hω)

)
(A.4.9)
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from Eq. (A.4.7) and

	in
i j (E) =

∞∫
0

d(--hω)/2π

×
∑

r,s,α,β

τirα τ ∗
jsβGn

rs(E − --hω) Gab
αβ(--hω) + τs jβ τ ∗

riαGn
rs(E + --hω) Gem

βα(--hω)

(A.4.10)

from Eq. (A.4.8). If we assume the phonons to remain in equilibrium we can use
Eqs. (A.1.15) to obtain Eq. (10.3.5) from Eq. (A.4.10), noting that the present τα(�x)
is similar to U ab

�β (�r ) in Section 10.3. Eq. (A.4.9) gives the full tensorial version of
Eq. (10.3.9).

Current: Note that there is no need to rederive the expressions for the inflow and the
outflow (see Eqs. (A.3.3)–(A.5.5)) since these were derived making use of Eq. (A.2.7)
which is still valid (see Eq. (A.4.4)). What has changed is the expression for the self-
energy [	] (cf. Eqs. (A.2.8) and (A.4.7)) and the inscattering [	in] (cf. Eqs. (A.2.19)
and (A.4.8)). But the basic expressions for the current in terms of these quantities
remains the same.

A.5 Coulomb blockade/Kondo resonance

Next we consider a problem involving purely coherent coupling to the contact, but
we now take into account the Coulomb interaction between the two spin levels inside
the channel denoted by c and d (Fig. A.5.1). For simplicity, we will only consider
an equilibrium problem (with one contact) and include one level of each type in this
discussion:

i--h
d

dt
c = εc +

∑
r

τr cr + Ud+dc (A.5.1a)

i--h
d

dt
cr = εr cr + τ ∗

r c (A.5.1b)

We can proceed as before to write Eq. (A.2.7) from Eq. (A.2.1). We now obtain the
same result except for an additional term Ud+dc:

i--h
d

dt
c − εc −

+∞∫
−∞

dt1	0(t, t1) c(t1) = Sc(t) + Ud+(t) d(t) c(t) (A.5.2)

Fourier transforming we obtain

(E − ε − 	0) c = Sc + U {d+dc}(E) (A.5.3)

	0 ≡
∑

r

|τr |2
E − εr + iη

Sc ≡
∑

r

τr Cr
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Fig. A.5.2 Density of states, D(E) = i[G − G+] calculated using G(E) from Eq. (A.5.12) with
ε = −0.1 eV, U = +0.2 eV, 〈d+ d〉 = 0.5 and 	0 calculated from Eq. (A.5.3) assuming that the
reservoir consists of a set of levels uniformly spaced by 0.4 meV over a range of energies from
−1 eV to +1 eV, with η = 1 meV and τr = 1.8 meV.

where we have added the braces { } around d+dc to indicate that we need the Fourier
transform of the product (which is different from the product of the individual Fourier
transforms).

Similarly, we can work with the equations for the down-spin components:

i--h
d

dt
d = εd +

∑
r

τr dr + Uc+cd (A.5.4a)

and

i--h
d

dt
dr = εr dr + τ ∗

r d (A.5.4b)

to obtain

(E − ε − 	0)d = Sd + U {c+cd}(E) (A.5.5)

where Sd ≡ 	rτr Dr .
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kBT = 0.026 eV kBT = 0.0026 eV

Fig. A.5.3 Density of states, D(E) = i[G − G+] calculated using G(E) from Eq. (A.5.20) with
µ = 0.05 eV and the same parameters as in Fig. A.5.2 (also shown for reference is the result using
G(E) from Eq. (A.5.12)). Note how the “Kondo peak” appears at µ = 0.05 eV at the lower
temperature (the author is grateful to A. W. Ghosh and D. Sen for their help).

What we propose to show in this section is that if we treat the new terms Ud+dc and
Uc+cd using a self-consistent field method, we will get a single peak for the spectral
function as shown in Fig. 1.5.1, but if we use a better approximation for these terms we
will obtain two peaks as shown in Fig. A.5.2, which can be viewed as a combination of
the two possibilities sketched in Fig. 1.5.2. If we take our approximation a step further
we will obtain the central peak around E = µ as shown in Fig. A.5.3. This peak is
responsible for the increased resistivity in bulk metals with magnetic impurities at low
temperatures as explained in the 1960s by Kondo (see Kouwenhoven and Glazman,
2001). More recently, experiments on single quantum dots and molecules in the 1990s
have revealed an enhanced conductance believed to arise from the same Kondo peak
in the spectral function (Meir et al., 1991).

Self-consistent field (SCF) approximation: The simplest approximation is to write

{c+cd}(E) ≈ 〈c+c〉d(E) (A.5.6a)

{d+dc}(E) ≈ 〈d+d〉c(E) (A.5.6b)

so that from Eqs. (A.5.3) and (A.5.5)

c = 1

E − ε − 	0 − U 〈d+d〉︸ ︷︷ ︸
Gc(E)

Sc (A.5.7a)

d = 1

E − ε − 	0 − U 〈c+c〉︸ ︷︷ ︸
Gd (E)

Sd (A.5.7b)
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This is essentially the unrestricted SCF approximation, though to complete the story we
would need to discuss how we can calculate 〈c+c〉 and 〈d+d〉. We will not go into this
aspect. Instead we will assume that 〈c+c〉 and 〈d+d〉 are given quantities, and discuss
how we can improve our expressions for Gc and Gd which are defined by the relations:
c = Gc Sc and d = Gd Sd .

Coulomb blockade: One approach is to replace Eq. (A.5.6b) with a better approxi-
mation, starting from the time-dependent equation for d+dc,

i--h
d

dt
d+dc = (ε + U )d+dc +

∑
r

(τ ∗
r d+

r cd + τr d+dr , c + τr d+dcr ) (A.5.8)

≈ (ε + U )d+dc +
∑

r

τr d+dcr (A.5.9)

→ (E − ε − U ){d+dc} =
∑

r

τr d+dcr

and making use of Eq. (A.5.2) to write

{d+dc}(E) =
∑

r

τr 〈d+d〉Cr

E − ε − U − 	0
= 〈d+d〉

E − ε − U − 	0
Sc (A.5.10)

Substituting into Eq. (A.5.3) we obtain

(E − ε − 	0) c =
(

1 + U 〈d+d〉
E − ε − U − 	0

)
Sc (A.5.11)

from which we can write the Green’s function, G(E)

c =
(

1

E − ε − 	0
+ U 〈d+d〉

(E − ε − 	0) (E − ε − U − 	0)

)
Sc

=
(

1 − 〈d+d〉
E − ε − 	0

+ 〈d+d〉
E − ε − U − 	0

)
︸ ︷︷ ︸

G(E)

Sc (A.5.12)

The density of states, D(E) = i[G − G+], calculated using the above G(E) for a typical
set of parameters is shown in Fig. A.5.2. This is similar to the picture we expect under
Coulomb blockade conditions (see Fig. 1.5.2).

Kondo resonance: To go further we step back to Eq. (A.5.8)

i--h
d

dt
d+dc = (ε + U )d+dc +

∑
r

(τ ∗
r d+

r cd + τr d+dr c + τr d+dcr )

→ (E − ε − U ){d+dc} =
∑

r

(τ ∗
r {d+

r cd} + τr {d+dr c} + τr {d+dcr }) (A.5.13)

and try to do better than what we did in going to Eq. (A.5.9) by starting from the
time-dependent equations for each of the three quantities appearing in Eqs. (A.5.13):
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i--h
d

dt
d+dcr = (εr − iη)d+dcr +

∑
r

(τ ∗
r d+dc + τr d+dr cr + τ ∗

r d+
r cr d)

≈ (εr − iη)d+dcr +
∑

r

τ ∗
r d+dc

{d+dcr } ≈ 〈d+d〉Cr +
∑

r

τ ∗
r

E − εr + iη
{d+dc} (A.5.14)

i--h
d

dt
d+dr c = εr d+dr c +

∑
r

(τ ∗
r d+dc + τr d+dr cr − τ ∗

r d+
r dr c)

≈ εr d+dr c +
∑

r

τ ∗
r d+dc − τ ∗

r fr c

{d+dr c} ≈
∑

r

τ ∗
r

E − εr + iη
{d+dc} − τ ∗

r fr

E − εr + iη
c (A.5.15)

i--h
d

dt
d+

r cd = (2ε + U − εr − iη)d+
r cd +

∑
r

(τr d+dc − τr d+
r dr c − τr d+

r cr c)

≈ (2ε + U − εr − iη)d+
r cd +

∑
r

(τr d+dc − τr fr c)

{d+
r cd} ≈

∑
r

τr

E − 2ε − U + εr + iη
{d+dc} − τr fr

E − 2ε − U + εr + iη
c

(A.5.16)

Substituting Eqs. (A.5.14), (A.5.15) and (A.5.16) into Eq. (A.5.13) we obtain a better
expression for {d+dc} than previously (see Eq. (A.5.10))

(E − ε − U − 2	0 − 	1){d+dc} = 〈d+d〉Sc − (	2 + 	3)c

→ {d+dc} = 〈d+d〉
E − ε − U − 2	0 − 	1

Sc − 	2 + 	3

E − ε − U − 2	0 − 	1
c (A.5.17)

where

	1 ≡
∑

r

|τr |2
E − 2ε − U + εr + iη

	2 ≡
∑

r

|τr |2 fr

E − εr + iη
(A.5.18)

	3 ≡
∑

r

|τr |2 fr

E − 2ε − U + εr + iη

Substituting Eq. (A.5.17) back into Eq. (A.5.13) we obtain(
E − ε − 	0 + U (	2 + 	3)

E − ε − U − 2	0 − 	1

)
c

=
(

1 + U 〈d+d〉
E − ε − U − 2	0 − 	1

)
Sc (A.5.19)
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so that the Green’s function G(E) (such that c = GSc) is given by

G =
[

1 − 〈d+d〉
/ (

E − ε − 	0 + U (	2 + 	3)

E − ε − U − 2	0 − 	1

)]

+
[
〈d+d〉

/ (
E − ε − 	0 − U − U (	0 + 	1 − 	2 − 	3)

E − ε − 2	0 − 	1

)]
(A.5.20)

The density of states D(E) = i[G − G+] calculated using G(E) from Eq. (A.5.20) with
the same parameters as in Fig. A.5.2 is shown in Fig. A.5.3 (also shown for reference
is the result using G(E) from Eq. (A.5.12)). Note how the central “Kondo peak” grows
in amplitude as the temperature is lowered. Indeed at low temperatures and also for
stronger coupling to the reservoir, the treatment presented above may be inadequate. It
may be necessary to go to higher orders (perhaps infinite!) in perturbation theory and
for many years this has been one of the major challenges in many-electron theory.

Summary: We have derived the expressions for the current starting from the second
quantized description of the composite channel–contact system and eliminating the
contact variables to obtain an effective equation for the channel having the form

i--h
d

dt
c − Hc − 	c︸︷︷︸

Outflow

= S︸︷︷︸
Inflow

It is possible to base the quantum mechanical treatment on the one-electron wave-
function instead of second quantized operators, but this does not provide satisfactory
answers to subtle issues like the presence or absence of Pauli blocking. For example, it
is natural to ask if 	 in the outflow term should depend on whether the final state (to
which outflow occurs) is empty or full. The answer is usually “no” for coherent pro-
cesses, but not always, as for example in the Kondo effect. Such questions are difficult
to answer from the one-electron picture, but the answers come out naturally in a second
quantized treatment. In strongly interacting systems it may be desirable to use similar
approaches to write transport equations not for the bare electron described by c, but for
“composite” or dressed particles obtained through appropriate unitary transformations
that include part of the “contact.”



MATLAB codes used to generate text figures

Copyright, Supriyo Datta: All codes included herein. It is planned to make “soft copies” of these
codes available through my website and also through the nanohub where they can be executed without
installation using a web browser.

Chapter 1

% Fig.1.1.1

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;eps0=8.854E-12;epsr=4;m=0.25*9.11e-31;%Effective mass
I0=q*q/hbar;

%Parameters
W=1e-6;L=10e-9;t=1.5e-9;%W=Width,L=Length of active region,t=oxide thickness
Cg=epsr*eps0*W*L/t;Cs=0.05*Cg;Cd=0.05*Cg;CE=Cg+Cs+Cd;U0=q/CE;
alphag=Cg/CE,alphad=Cd/CE

%alphag=1;alphad=0.5;U0=0.25;

kT=0.025;mu=0;ep=0.2;
v=1e5;%Escape velocity

g1=hbar*v/(q*L);g2=g1;g=g1+g2;
%g1=0.005;g2=0.005;g=g1+g2;

%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);

D0=m*q*W*L/(pi*hbar*hbar);% Step Density of states per eV
D=D0*[zeros(1,251) ones(1,250)];
%D=(2*g/(2*pi))./((E.ˆ2)+((g/2)ˆ2));% Lorentzian Density of states per eV

%D=D./(dE*sum(D));%Normalizing to one

%Reference number of electrons
f0=1./(1+exp((E+ep-mu)./kT));N0=2*dE*sum(D.*f0);ns=N0/(L*W*1e4),%/cmˆ2

%Bias
IV=61;VV=linspace(0,0.6,IV);
for iV=1:IV

Vg=0.5;Vd=VV(iV);

343
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%Vd=0.5;Vg=VV(iV);
mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

U=0;%Self-consistent field
dU=1;
while dU>1e-6

f1=1./(1+exp((E+UL+U+ep-mu1)./kT));
f2=1./(1+exp((E+UL+U+ep-mu2)./kT));

N(iV)=dE*sum(D.*((f1.*g1/g)+(f2.*g2/g)));
Unew=U0*(N(iV)-N0);dU=abs(U-Unew);

U=U+0.1*(Unew-U);
end
I(iV)=dE*I0*(sum(D.*(f1-f2)))*g1*g2/g;
end

hold on
h=plot(VV,I,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Voltage (V) --->�)
ylabel(� Current (A) ---> �)
grid on

% Fig.1.1.3

clear all

E=linspace(-.25,.25,501);dE=E(2)-E(1);kT=0.025;Ef=0;
V=0;mu1=Ef+(V/2);mu2=Ef-(V/2);
f1=1./(1+exp((E-mu1)./kT));f2=1./(1+exp((E-mu2)./kT));
%dE*(sum(f1-f2))/V

hold on
h=plot(f1,E,�g�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Fermi function --->�)
ylabel(� E - mu (eV) ---> �)
grid on

% Fig.1.3.3, 1.5.1

clear all

E=linspace(-.5,.5,50001);dE=E(2)-E(1);gam=0.05;
D=(gam/(2*pi))./((E.ˆ2)+((gam/2)ˆ2));
%D=(gam/(2*pi))./(((E-0.25).ˆ2)+((gam/2)ˆ2));%Use for Fig.1.5.2
%D=D+((gam/(2*pi))./(((E+0.25).ˆ2)+((gam/2)ˆ2)));%Use for Fig.1.5.2
dE*sum(D)

hold on
h=plot(D,E,�g�);
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set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� D (E) --->�)
ylabel(� E (eV) ---> �)
grid on

% Fig.1.4.6

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.025;kT=0.025;mu=0;ep=0.2;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;

%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);
D=(g/(2*pi))./((E.ˆ2)+((g/2)ˆ2));% Lorentzian Density of states per eV
D=D./(dE*sum(D));%Normalizing to one

%Bias
IV=101;VV=linspace(0,1,IV);
for iV=1:IV

Vg=0;Vd=VV(iV);
%Vd=0;Vg=VV(iV);

mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

U=0;%Self-consistent field
dU=1;
while dU>1e-6

f1=1./(1+exp((E+ep+UL+U-mu1)./kT));
f2=1./(1+exp((E+ep+UL+U-mu2)./kT));

N(iV)=dE*sum(D.*((f1.*g1/g)+(f2.*g2/g)));
Unew=U0*N(iV);dU=abs(U-Unew);

U=U+0.1*(Unew-U);
end
I(iV)=dE*I0*(sum(D.*(f1-f2)))*(g1*g2/g);
end

hold on
h=plot(VV,N,�b�);
%h=plot(VV,I,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Voltage ( V ) --->�)
%ylabel(� Current ( A ) ---> �)
ylabel(� Number of electrons ---> �)
grid on
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% Fig.E.1.3

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.025;kT1=0.026;kT2=0.025;ep=0.2;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;

%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);
g1=0.005*(E+abs(E))./(E+E+1e-6);% zero for negative E
g2=0.005*ones(1,NE);g1=g2;
g=g1+g2;

%Bias
IV=101;VV=linspace(-0.25,0.25,IV);
for iV=1:IV

mu1=ep+VV(iV);mu2=mu1;
f1=1./(1+exp((E-mu1)./kT1));
f2=1./(1+exp((E-mu2)./kT2));
D=(g./(2*pi))./(((E-ep).ˆ2)+((g./2).ˆ2));

D=D./(dE*sum(D));
I(iV)=dE*2*I0*(sum(D.*(f1-f2).*g1.*g2./g));
end

hold on
%h=plot(VV,N/2,�b�);%Part (a)
h=plot(VV,I,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Voltage ( V ) --->�)
ylabel(� Current ( A ) ---> �)
%ylabel(� Number of electrons ---> �)
grid on

% Fig.E.1.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.025;kT=0.025;mu=0;ep=0.2;N0=0;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;

%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);
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g1=0.005*(E+abs(E))./(E+E+1e-6);% zero for negative E
g2=0.005*ones(1,NE);
g=g1+g2;

%Bias
IV=101;VV=linspace(-.6,.6,IV);
for iV=1:IV

Vg=0;Vd=VV(iV);
%Vd=0;Vg=VV(iV);

mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

U=0;%Self-consistent field
dU=1;
while dU>1e-6

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));
D=(g./(2*pi))./(((E-ep-UL-U).ˆ2)+((g./2).ˆ2));

D=D./(dE*sum(D));
N(iV)=dE*2*sum(D.*((f1.*g1./g)+(f2.*g2./g)));

Unew=U0*(N(iV)-N0);dU=abs(U-Unew);
U=U+0.1*(Unew-U);

end
I(iV)=dE*2*I0*(sum(D.*(f1-f2).*g1.*g2./g));
end

hold on
%h=plot(VV,N/2,�b�);%Part (a)
h=plot(VV,I,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Voltage (V) --->�)
ylabel(� Current (A) ---> �)
%ylabel(� Number of electrons ---> �)
grid on

Chapter 2

% Fig.2.3.2a, b

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;

%Lattice
Np=100;a=1e-10;X=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;L=a*(Np+1);
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

[V,D]=eig(T);D=diag(D);[Enum,ind]=sort(D);

E1=D(ind(1));psi1=abs(V(:,ind(1)));P1=psi1.*conj(psi1);
E2=D(ind(25));psi2=abs(V(:,ind(25)));P2=psi2.*conj(psi2);
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%analytical eigenvalues
Ean=(((hbar*pi)ˆ2)/(2*m*(Lˆ2))/q)*[1:Np].*[1:Np];

hold on
%h=plot(Enum,�bx�);% Part (a)
%h=plot(Ean,�b�);% Part (a)
h=plot(P1,�b�);% Part (b)
h1=plot(P2,�b�);% Part (b)
set(h,�linewidth�,[3.0])
set(h1,�linewidth�,[1.0])
set(gca,�Fontsize�,[25])

%xlabel(� Eigenvalue Number , alpha --->�);% Part (a)
%ylabel(� E (eV) ---> �);% Part (a)
xlabel(� Lattice site # --->�);% Part (b)
ylabel(� Probability ---> �);% Part (b)
grid on

% Fig.2.3.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;

%Lattice
Np=100;a=1e-10;X=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;L=a*(Np+1);
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
T(1,Np)=-t0;T(Np,1)=-t0;

[V,D]=eig(T);D=diag(D);[Enum,ind]=sort(D);

E1=D(ind(1));psi1=abs(V(:,ind(1)));P1=psi1.*conj(psi1);
E2=D(ind(50));psi2=abs(V(:,ind(50)));P2=psi2.*conj(psi2);

%analytical eigenvalues
Ean=(((hbar*pi)ˆ2)/(2*m*(Lˆ2))/q)*[1:Np].*[1:Np];

hold on
h=plot(Enum,�bx�);
set(h,�linewidth�,[3.0])
set(gca,�Fontsize�,[25])
xlabel(� Eigenvalue Number, alpha --->�);
ylabel(� E (eV) ---> �);
grid on

% Fig.2.3.6, 2.3.7

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;
a0=4*pi*epsil*hbar*hbar/(m*q*q),E0=q/(8*pi*epsil*a0)
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%Lattice
Np=100;a=(5e-10*2/Np);% *1 for Fig.1.3.6 and *2 for Fig.1.3.7
R=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;

%Quantum numbers
n=1;l=0;% for 1s, n=1 and for 2s, n=2

%Hamiltonian,H = Kinetic,K + Potential,U
K=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
U=((-q/(4*pi*epsil)./R)+(l*(l+1)*hbar*hbar/(2*m*q))./(R.*R));U=diag(U);
[V,D]=eig(K+U);D=diag(D);[DD,ind]=sort(D);
E=D(ind(n-l));psi=V(:,ind(n-l));
P=psi.*conj(psi);[-E0/(nˆ2) E]

%analytical solutions
P1s=(4*a/(a0ˆ3))*R.*R.*exp(-2*R./a0);
P2s=(4*a/(2*4*4*(a0ˆ3)))*R.*R.*((2-(R./a0)).ˆ2).*exp(-2*R./(2*a0));
P3s=(4*a/(3*81*81*(a0ˆ3)))*R.*R.*((27-(18*R./a0)+(2*(R./a0).ˆ2)).ˆ2).*exp(-2*R./(3*a0));
P2p=(4*a/(3*32*(a0ˆ3)))*R.*R.*((R./a0).ˆ2).*exp(-2*R./(2*a0));
P3p=(8*a/(3*81*81*(a0ˆ3)))*R.*R.*((6-(R./a0)).ˆ2).*((R./a0).ˆ2).*exp(-2*R./(3*a0));

hold on
h=plot(R,P,�b�);
h=plot(R,P1s,�bx�);% use P1s for �1s� and P2s for �2s�
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� x (m ) --->�);
ylabel(� Probability ---> �);
grid on

Chapter 3

% Fig.3.1.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;
%Lattice
Np=200;a=(10e-10/Np);R=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;

%Hamiltonian,H = Kinetic,T + Potential,U + Uscf
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
UN=(-q*2/(4*pi*epsil))./R;% Z=2 for Helium

Uscf=zeros(1,Np);change=1;
while change>0.01

[V,D]=eig(T+diag(UN+Uscf));D=diag(D);[DD,ind]=sort(D);
E=D(ind(1));psi=V(:,ind(1));P=psi.*conj(psi);P=P�;

Unew=(q/(4*pi*epsil))*((sum(P./R)-cumsum(P./R))+(cumsum(P)./R));
change=sum(abs(Unew-Uscf))/Np,Uscf=Unew;

end
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%analytical solutions for 1s hydrogen
a0=4*pi*epsil*hbar*hbar/(m*q*q);
P0=(4*a/(a0ˆ3))*R.*R.*exp(-2*R./a0);

hold on
%h=plot(R,UN,�b�);% Part (a)
%h=plot(R,Uscf,�b�);% Part(a)
h=plot(R,P,�b�);% Part (b)
h=plot(R,P0,�bx�);% Part (b)
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� R ( m ) --->�);
%ylabel(� U ( eV ) ---> �);% Part (a)
%axis([0 1e-9 -100 20]);% Part (a)
ylabel(� Probability ---> �);% Part (b)
axis([0 1e-9 0 0.1]);% Part (b)
grid on

% Fig.3.1.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;

%Lattice
Np=200;a=(10e-10/Np);R=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;

%Hamiltonian,H = Kinetic,T + Potential,U + Ul + Uscf
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
UN=(-q*14/(4*pi*epsil))./R;% Z=14 for silicon
l=1;Ul=(l*(l+1)*hbar*hbar/(2*m*q))./(R.*R);

Uscf=zeros(1,Np);change=1;
while change>0.1

[V,D]=eig(T+diag(UN+Uscf));D=diag(D);[DD,ind]=sort(D);
E1s=D(ind(1));psi=V(:,ind(1));P1s=psi.*conj(psi);P1s=P1s�;
E2s=D(ind(2));psi=V(:,ind(2));P2s=psi.*conj(psi);P2s=P2s�;
E3s=D(ind(3));psi=V(:,ind(3));P3s=psi.*conj(psi);P3s=P3s�;

[V,D]=eig(T+diag(UN+Ul+Uscf));D=diag(D);[DD,ind]=sort(D);
E2p=D(ind(1));psi=V(:,ind(1));P2p=psi.*conj(psi);P2p=P2p�;
E3p=D(ind(2));psi=V(:,ind(2));P3p=psi.*conj(psi);P3p=P3p�;
n0=(2*(P1s+P2s+P3s))+(6*P2p)+(2*P3p);

n=n0*(13/14);
Unew=(q/(4*pi*epsil))*((sum(n./R)-cumsum(n./R))+(cumsum(n)./R));
%Uex=(-q/(4*pi*epsil))*((n./(4*pi*a*R.*R)).ˆ(1/3));%Unew=Unew+Uex;
change=sum(abs(Unew-Uscf))/Np,Uscf=Unew;

end

[E1s E2s E2p E3s E3p]
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%analytical solution for 1s hydrogen
a0=4*pi*epsil*hbar*hbar/(m*q*q);
P0=(4*a/(a0ˆ3))*R.*R.*exp(-2*R./a0);

hold on
h=plot(R,P1s,�b�);
h=plot(R,P0,�bx�);
h=plot(R,P3p,�bo�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� R ( m ) --->�);
ylabel(� Probability ---> �);
axis([0 5e-10 0 0.08]);
grid on

% Fig.3.3.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;
a0=4*pi*epsil*hbar*hbar/(m*q*q);E0=q/(8*pi*epsil*a0);

R0=.05*[1:200];
a=(-2*E0)*(1-(exp(-2*R0).*(1+R0)))./R0;
b=(-2*E0)*exp(-R0).*(1+R0);
s=(1+R0+((R0.ˆ2)/3)).*exp(-R0);
Uee=(2*E0)./sqrt(1+(R0.ˆ2));UNN=(2*E0)./R0;

EB0=(a+b)./(1+s);R=a0*R0;

hold on
h=plot(R,EB0,�b--�);
h=plot(R,Uee,�bx�);
h=plot(R,UNN,�b�);
h=plot(R,(2*EB0)+UNN+Uee,�b+�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
xlabel(� R ( m ) --->�)
ylabel(� Energy (eV) ---> �)
axis([0 4e-10 -25 25])

% Fig.3.4.2

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.5;% U0 is 0.25 for part(a), 0.1 for part (b)



352 MATLAB codes used to generate text figures

kT=0.025;mu=0;ep=0.2;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;

%Bias
IV=101;VV=linspace(0,1,IV);
for iV=1:IV

Vd=0;Vg=VV(iV);
mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

f1=1/(1+exp((ep+UL-mu1)/kT));f2=1/(1+exp((ep+UL-mu2)/kT));
f1U=1/(1+exp((ep+UL+U0-mu1)/kT));f2U=1/(1+exp((ep+UL+U0-mu2)/kT));

P1=((g1*f1)+(g2*f2))/(1e-6+(g1*(1-f1))+(g2*(1-f2)));
P2=P1*((g1*f1U)+(g2*f2U))/(1e-6+(g1*(1-f1U))+(g2*(1-f2U)));
P0=1/(1+P1+P1+P2);P1=P1*P0;P2=P2*P0;
p0(iV)=P0;p1(iV)=P1;p2(iV)=P2;
end

hold on
h=plot(VV,p0,�bo�);
h=plot(VV,p1,�b�);
h=plot(VV,p2,�bx�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
xlabel(� Gate voltage, VG ( volts ) --->�)
ylabel(� Current ( Amperes ) ---> �)
axis([0 1 0 1])

% Fig.3.4.3

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.1;% U0 is 0.25 for part(a), 0.025 for part (b)
kT=0.025;mu=0;ep=0.2;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;

%Bias
IV=101;VV=linspace(0,1.5,IV);
for iV=1:IV

Vg=0;Vd=VV(iV);
%Vd=0;Vg=VV(iV);

mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

%Multielectron method
f1=1/(1+exp((ep+UL (-U0/2)-mu1)/kT));f2=1/(1+exp((ep+UL(-U0/2)-mu2)/kT));
f1U=1/(1+exp((ep+UL+(U0/2)-mu1)/kT));f2U=1/(1+exp((ep+UL+(U0/2)-mu2)/kT));
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P1=((g1*f1)+(g2*f2))/(1e-6+(g1*(1-f1))+(g2*(1-f2)));
P2=P1*((g1*f1U)+(g2*f2U))/(1e-6+(g1*(1-f1U))+(g2*(1-f2U)));
P0=1/(1+P1+P1+P2);P1=P1*P0;P2=P2*P0;

I1(iV)=2*I0*((P0*g1*f1)-(P1*g1*(1-f1))+(P1*g1*f1U)-(P2*g1*(1-f1U)));
I2(iV)=2*I0*((P0*g2*f2)-(P1*g2*(1-f2))+(P1*g2*f2U)-(P2*g2*(1-f2U)));
end

%RSCF method (same as Fig.1.4.6 with added factor of two)
%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);
D=(g/(2*pi))./((E.ˆ2)+((g/2)ˆ2));% Lorentzian Density of states per eV
D=D./(dE*sum(D));%Normalizing to one

%Bias
for iV=1:IV

Vg=0;Vd=VV(iV);
%Vd=0;Vg=VV(iV);

mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

U=0;%Self-consistent field
dU=1;
while dU>1e-6

F1=1./(1+exp((E+ep+UL+U-mu1)./kT));
F2=1./(1+exp((E+ep+UL+U-mu2)./kT));

N(iV)=dE*2*sum(D.*((F1.*g1/g)+(F2.*g2/g)));
Unew=U0*N(iV);
dU=abs(U-Unew);U=U+0.1*(Unew-U);

end
I(iV)=dE*2*I0*(sum(D.*(F1-F2)))*(g1*g2/g);
end

hold on
h=plot(VV,I1,�b�);
h=plot(VV,I,�b--�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
xlabel(� Drain Voltage, VD ( volts ) --->�)
ylabel(� Current ( Amperes ) ---> �)
axis([0 1.5 0 1.4e-6])

%E.3.5c: Unrestricted scf
clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;I0=q*q/hbar;

%Parameters
U0=0.25;kT=0.025;mu=0;ep=0.2;
g1=0.005;g2=0.005;g=g1+g2;
alphag=1;alphad=0.5;
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%Energy grid
NE=501;E=linspace(-1,1,NE);dE=E(2)-E(1);
D=(g/(2*pi))./((E.ˆ2)+((g/2)ˆ2));% Lorentzian Density of states per eV
D=D./(dE*sum(D));%Normalizing to one

%Bias
IV=101;VV=linspace(0,1,IV);
for iV=1:IV

Vg=0;Vd=VV(iV);
%Vd=0;Vg=VV(iV);

mu1=mu;mu2=mu1-Vd;UL=-(alphag*Vg)-(alphad*Vd);

Uup=0;Udn=0.1;%Unrestricted self-consistent field
dU=1;while dU>.001

f1up=1./(1+exp((E+ep+UL+Uup-mu1)./kT));
f2up=1./(1+exp((E+ep+UL+Uup-mu2)./kT));

Nup(iV)=dE*sum(D.*((f1up.*g1)+(f2up.*g2))./(g1+g2));
f1dn=1./(1+exp((E+ep+UL+Udn-mu1)./kT));

f2dn=1./(1+exp((E+ep+UL+Udn-mu2)./kT));
Ndn(iV)=dE*sum(D.*((f1dn.*g1)+(f2dn.*g2))./(g1+g2));
Udnnew=2*U0*(Nup(iV)-0.5);Udn=Udn+0.1*(Udnnew-Udn);
Uupnew=2*U0*(Ndn(iV)-0.5);Uup=Uup+0.1*(Uupnew-Uup);

dU=abs(Uup-Uupnew)+abs(Udn-Udnnew);
end
Iup(iV)=dE*I0*sum(D.*(f1up-f2up))*(g1*g2/g);
Idn(iV)=dE*I0*sum(D.*(f1dn-f2dn))*(g1*g2/g);
end

hold on
%h=plot(VV,Nup,�bo�);%Part (b)
%h=plot(VV,Ndn,�bx�);%Part (b)
h=plot(VV,Iup+Idn,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(� Voltage (V) --->�)
ylabel(� Current (A) ---> �)
%ylabel(� Number of electrons ---> �);%Part (b)
grid on

Chapter 4

% Fig.4.1.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;
a0=4*pi*epsil*hbar*hbar/(m*q*q);E0=q/(8*pi*epsil*a0);
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%Basis
L=.074e-9/a0;s=exp(-L)*(1+L+((Lˆ2)/3));
r=linspace(-2e-10,+2e-10,101);r0=r/a0;
psi=sqrt(1/(pi*(a0ˆ3)))*(exp(-abs(r0-(L/2)))+exp(-abs(r0+(L/2))));
n=2*psi.*conj(psi)./(2*(1+s));

a=-2*E0*(1-((1+L)*exp(-2*L)))/L;
b=-2*E0*(1+L)*exp(-L);
EB0=-E0+((a+b)/(1+s));
[a b s EB0]

hold on
h=plot(r,n,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
xlabel(� R ( m ) --->�)
ylabel(� Electron density ( /mˆ3 ) ---> �)
axis([-2e-10 2e-10 0 2e30])

% Fig.4.3.1

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;q=1.602e-19;mu=0.25;
kT=0.025;% 0.025 for Part (c),(e) and 0.0025 for Part (d),(f)

%Lattice
Np=100;a=2e-10;X=a*[1:1:Np];t0=(hbarˆ2)/(2*m*(aˆ2))/q;U=linspace(0,0,Np);
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
T(1,Np)=-t0;T(Np,1)=-t0;%Periodic boundary conditions for Parts (d), (f)
U(Np/2)=U(Np/2)+10;%Impurity potential with Parts (d), (f)

[V,D]=eig(T+diag(U));E=sort(diag(D)’);
D=diag(D)-mu;
rho=1./(1+exp(D./kT));rho=V*diag(rho)*V’;rho=diag(rho)/a;

hold on
grid on
%h=plot(E,�b�);h=plot(mu*ones(Np/2,1),�b�);% Part (b)
h=plot(X,rho,�b�);% Part (c)-(f)
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
%xlabel(� Eigenvalues number --->�);% Part (b)
%ylabel(� Energy ( eV ) ---> �);% Part (b)
xlabel(� x ( m ) --->�);% Part (c)-(f)
ylabel(� Electron density ( /mˆ3 ) ---> �);% Part (c)-(f)
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%axis([0 100 0 4]);% Part (b)
axis([0 2e-8 0 1e9]);% Part (c)-(f)

% Fig.4.4.1, 4.4.2

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;epsil=8.854e-12;q=1.602e-19;
a0=4*pi*epsil*hbar*hbar/(m*q*q);E0=q/(8*pi*epsil*a0);

F=linspace(0,1e9,11);A=(a0*128*sqrt(2)/243)*F;B=(-3*a0)*F;
for kF=1:11
M=[-E0 0 A(kF);0 -E0/4 B(kF);A(kF) B(kF) -E0/4];
[V,D]=eig(M);D=diag(D);[DD,ind]=sort(D);
E1(kF)=D(ind(1));E2(kF)=D(ind(2));E3(kF)=D(ind(3));
end

%perturbation theory results
E1s=-E0-((A.ˆ2)/(3*E0/4));
E2s=-(E0/4)+B;
E2p=-(E0/4)-B;

hold on
%h=plot(F,E1,�b�);% Fig.3.4.1
%h=plot(F,E1s,�bx�);% Fig.3.4.1
h=plot(F,E2,�b�);% Fig.3.4.2
h-plot(F,E3,�b�);% Fig.3.4.2
h=plot(F,E2s,�bx�);% Fig.3.4.2
h=plot(F,E2p,�bo�);% Fig.3.4.2
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
grid on
xlabel(� Field ( V/m ) --->�);
ylabel(� Energy ( eV ) ---> �);
%axis([0 2e-8 0 1e9]);

Chapter 5

% Fig.5.1.5

clear all

k=linspace(-1,1,21);a=2;b=1;
E1=sqrt((aˆ2)+(bˆ2)+(2*a*b.*cos(pi*k)));

hold on
h=plot(k,E1,�b�);
h=plot(k,-E1,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(�k (in units of pi/a)--->�)
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ylabel(�Energy (eV) ---> �)
grid on

% Fig.5.3.2

clear all

Esa=-8.3431;Epa=1.0414;Esc=-2.6569;Epc=3.6686;Esea=8.5914;Esec=6.7386;
Vss=-6.4513;Vxx=1.9546;Vxy=5.0779;Vsapc=4.4800;Vpasc=5.7839;Vseapc=4.8422;
Vpasec=4.8077;

%Either of the following choices for d1,d2,d3 and d4 should give the same result.
d1=[1 1 1]/4;d2=[1 -1 -1]/4;d3=[-1 1 -1]/4;d4=[-1 -1 1]/4;
d1=[0 0 0]/2;d2=[0 -1 -1]/2;d3=[-1 0 -1]/2;d4=[-1 -1 0]/2;

l=1;m=1;n=1;kmax=pi;Nt=21;%L-direction
%l=1;m=0;n=0;kmax=2*pi;Nt=21;%X-direction

for Nk=1:Nt
k=[l m n]*kmax*(Nk-1)/(Nt-1);

p1=exp(i*sum(k.*d1));p2=exp(i*sum(k.*d2));
p3=exp(i*sum(k.*d3));p4=exp(i*sum(k.*d4));

g0=(p1+p2+p3+p4)/4;g1=(p1+p2-p3-p4)/4;
g2=(p1-p2+p3-p4)/4;g3=(p1-p2-p3+p4)/4;

h=[Esa/2 Vss*g0 0 0 0 Vsapc*g1 Vsapc*g2 Vsapc*g3 0 0;
0 Esc/2 -Vpasc*conj(g1) -Vpasc*conj(g2) -Vpasc*conj(g3) 0 0 0 0 0;
0 0 Epa/2 0 0 Vxx*g0 Vxy*g3 Vxy*g2 0 -Vpasec*g1;
0 0 0 Epa/2 0 Vxy*g3 Vxx*g0 Vxy*g1 0 -Vpasec*g2;
0 0 0 0 Epa/2 Vxy*g2 Vxy*g1 Vxx*g0 0 -Vpasec*g3;
0 0 0 0 0 Epc/2 0 0 Vseapc*(g1) 0;
0 0 0 0 0 0 Epc/2 0 Vseapc*(g2) 0;
0 0 0 0 0 0 0 Epc/2 Vseapc*(g3) 0;
0 0 0 0 0 0 0 0 Esea/2 0;
0 0 0 0 0 0 0 0 0 Esec/2];

H=h+h�;
[V,D]=eig(H);

eigst = sum(D);
E(Nk,:) = sort(real(eigst));

X(Nk)=-(Nk-1)/(Nt-1);%L-direction
X1(Nk)=(Nk-1)/(Nt-1);%X-direction

end

hold on
h=plot(X,E,�b�);
%h=plot(X1,E,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(�k (as fraction of maximum value)--->�)
ylabel(�Energy (eV) ---> �)
grid on
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%Note: X-axis from 0 to +1 represents the -X direction
%while the section from 0 to -1 represents the -L direction

% Fig.5.4.1a

clear all

soa=.3787/3;soc=.0129/3;Esa=-8.3431;Epa=1.0414;Esc=-2.6569;Epc=3.6686;Esea=8.5914;
Esec=6.7386;Vss=-6.4513;Vxx=1.9546;Vxy=5.0779;Vsapc=4.4800;
Vpasc=5.7839;Vseapc=4.8422;Vpasec=4.8077;
d1=[1 1 1]/4;d2=[1 -1 -1]/4;d3=[-1 1 -1]/4;d4=[-1 -1 1]/4;
d1=[0 0 0]/2;d2=[0 -1 -1]/2;d3=[-1 0 -1]/2;d4=[-1 -1 0]/2;

l=1;m=1;n=1;kmax=pi;Nt=101;%L-direction
l=1;m=0;n=0;kmax=2*pi;Nt=101;%X-direction

for Nk=1:Nt
k=[l m n]*kmax*(Nk-1)/(Nt-1);

p1=exp(i*sum(k.*d1));p2=exp(i*sum(k.*d2));
p3=exp(i*sum(k.*d3));p4=exp(i*sum(k.*d4));

g0=(p1+p2+p3+p4)/4;g1=(p1+p2-p3-p4)/4;
g2=(p1-p2+p3-p4)/4;g3=(p1-p2-p3+p4)/4;

h=[Esa/2 Vss*g0 0 0 0 Vsapc*g1 Vsapc*g2 Vsapc*g3 0 0;
0 Esc/2 -Vpasc*conj(g1) -Vpasc*conj(g2) -Vpasc*conj(g3) 0 0 0 0 0;
0 0 Epa/2 0 0 Vxx*g0 Vxy*g3 Vxy*g2 0 -Vpasec*g1;
0 0 0 Epa/2 0 Vxy*g3 Vxx*g0 Vxy*g1 0 -Vpasec*g2;
0 0 0 0 Epa/2 Vxy*g2 Vxy*g1 Vxx*g0 0 -Vpasec*g3;
0 0 0 0 0 Epc/2 0 0 Vseapc*(g1) 0;
0 0 0 0 0 0 Epc/2 0 Vseapc*(g2) 0;
0 0 0 0 0 0 0 Epc/2 Vseapc*(g3) 0;
0 0 0 0 0 0 0 0 Esea/2 0;
0 0 0 0 0 0 0 0 0 Esec/2];

H=[h+h� zeros(10);
zeros(10) h+h�];

hso=zeros(20);
hso(3,4)=-i*soa;hso(3,15)=soa;
hso(4,15)=-i*soa;
hso(5,13)=-soa;hso(5,14)=i*soa;
hso(6,7)=-i*soc;hso(6,18)=soc;
hso(7,18)=-i*soc;
hso(8,16)=-soc;hso(8,17)=i*soc;
hso(13,14)=i*soa;
hso(16,17)=i*soc;
Hso=hso+hso�;

[V,D]=eig(H+Hso);
eigst = sum(D);
E(Nk,:) = sort(real(eigst));
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X(Nk)=-(Nk-1)/(Nt-1);%L-direction
X1(Nk)=(Nk-1)/(Nt-1);%X-direction

end

hold on
%h=plot(X,E,�b�);
h=plot(X1,E,�b�);
axis([-1 1 -3 3])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[25])
xlabel(�k (as fraction of maximum value)--->�)
ylabel(�Energy (eV) ---> �)
grid on

Chapter 6

% Fig.6.1.2

clear all

z=zeros(5);Z=zeros(10);
%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=2.45e-10*4/sqrt(3);m=9.110e-31;
d1=[1 1 1]/4;d2=[1 -1 -1]/4;d3=[-1 1 -1]/4;d4=[-1 -1 1]/4;

%sp3s* model parameters
soa=.3787/3;soc=.0129/3;
Esa=-8.3431;Epa=1.0414;Esc=-2.6569;Epc=3.6686;Esea=8.5914;Esec=6.7386;
Vss=-6.4513;Vpasc=-5.7839;Vpasec=-4.8077;
Vsapc=4.4800;Vseapc=4.8422;Vxx=1.9546;Vxy=5.0779;

%Conduction band effective mass model parameters
Ec=1.55;meff=.12*m;

Nt=101;kk=1*linspace(0,1,Nt);
l=0.5;m=0.5;n=0.5;%L-direction
%l=1;m=0;n=0;%X-direction

for Nk=1:Nt
k=2*pi*kk(Nk)*[l m n];

%sp3s* model
p1=exp(i*sum(k.*d1));p2=exp(i*sum(k.*d2));
p3=exp(i*sum(k.*d3));p4=exp(i*sum(k.*d4));

g0=(p1+p2+p3+p4)/4;g1=(p1+p2-p3-p4)/4;
g2=(p1-p2+p3-p4)/4;g3=(p1-p2-p3+p4)/4;

a1=diag([Esa Epa Epa Epa Esea]);A1=[a1 z;z a1];
a2=diag([Esc Epc Epc Epc Esec]);A2=[a2 z;z a2];
b=[Vss*g0 Vsapc*g1 Vsapc*g2 Vsapc*g3 0;

Vpasc*g1 Vxx*g0 Vxy*g3 Vxy*g2 Vpasec*g1;
Vpasc*g2 Vxy*g3 Vxx*g0 Vxy*g1 Vpasec*g2;
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Vpasc*g3 Vxy*g2 Vxy*g1 Vxx*g0 Vpasec*g3;
0 Vseapc*conj(g1) Vseapc*conj(g2) Vseapc*conj(g3) 0];B=[b z;z b];
h=[a1 b;b� a2];H=[A1 B;B� A2];

aso=soa*[0 0 0 0 0 0 0 0 0 0;
0 0 -i 0 0 0 0 0 1 0;
0 i 0 0 0 0 0 0 -i 0;
0 0 0 0 0 0 -1 i 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 -1 0 0 0 i 0 0;
0 0 0 -i 0 0 -i 0 0 0;
0 1 i 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0];

cso=soc*[0 0 0 0 0 0 0 0 0 0;
0 0 -i 0 0 0 0 0 1 0;
0 i 0 0 0 0 0 0 -i 0;
0 0 0 0 0 0 -1 i 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 -1 0 0 0 i 0 0;
0 0 0 -i 0 0 -i 0 0 0;
0 1 i 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0];H=H+[aso Z;Z cso];

[V,D]=eig(H);
eiglst = sum(D);
E(Nk,:) = sort(real(eiglst));

%Conduction band effective mass model
Em(Nk)=Ec+((hbarˆ2)*sum(k.*k)/(2*meff*q*(aˆ2)));
end

kk=-kk;%L-direction

hold on
h1=plot(kk,E, �b�);
h2=plot(kk,Em,�b--�);
axis([-1 1 -3 3])
set(h1,�linewidth�,[1.0])
set(h2,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� ka (fraction of maximum value ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.6.1.7

clear all

t=3;m=65;%66 for (a), 65 for (b)
D=2*m*0.14*sqrt(3)/(2*pi);
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Eg=2*t*0.14/D;nu=round(2*m/3)+0;% +1 is used for higher mode
kyb=2*pi*nu/(2*m);
kxa=0.05*linspace(-pi,pi,101);

E1=(3*t/2)*sqrt(((kxa*2/3).ˆ2)+(((abs(kyb)-(2*pi/3))*2/sqrt(3)).ˆ2));%a0=b*2/sqrt(3)=a*2/3;
E2=t*sqrt(1+(4*cos(kyb).*cos(kxa))+(4*cos(kyb).ˆ2));

k=kxa./pi;[D Eg nu min(E1)]

hold on
h=plot(k,E1, �b�);
h=plot(k,-E1, �b�);
axis([-0.05 0.05 -0.6 0.6])
set(h,�linewidth�,[1.0])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� kxa/pi (fraction of maximum value ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.6.1.9

clear all

t=3;kxa=0;
kyb=linspace(-pi,pi,101);
E1=(3*t/2)*sqrt(((kxa*2/3).ˆ2)+(((abs(kyb)-(2*pi/3))*2/sqrt(3)).ˆ2));%a0=b*2/sqrt(3)=a*2/3;
E2=t*sqrt(1+(4*cos(kyb).*cos(kxa))+(4*cos(kyb).ˆ2));

k=kyb./pi;

hold on
h=plot(k,E1,�b�);
h=plot(k,-E1,�b�);
h=plot(k,E2,�bx�);
h=plot(k,-E2,�bx�);
axis([-1 1 -15 15])
set(h,�linewidth�,[1.0])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� kyb/pi ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.6.2.1

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;q=1.602e-19;L=1e-9;
D2=zeros(1,101);
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Lz=20e-9;%5e-9 for (a),20e-9 for (b)
E0=(hbarˆ2)*(piˆ2)/(2*q*m*Lzˆ2);
for p=1:25
E=linspace(-0.1,0.25,101);thet=(E+abs(E))./(2*E);
EE=E-(p*p*E0);theta=(EE+abs(EE))./(2*EE);
D1=(L)*q*m*thet.*real((2*m*E*q).ˆ(-0.5))./(pi*hbar);
D2=D2+((Lˆ2)*q*m*theta./(2*pi*hbar*hbar));
D3=(Lˆ3)*q*m*thet.*real((2*m*E*q).ˆ0.5)./(2*pi*pi*hbar*hbar*hbar);
end

hold on
h=plot(D2,E,�b�);
h=plot(D3.*Lz/L,E,�b�);
%axis([0 10 -0.1 0.25]);%Part (a)
axis([0 40 -0.1 0.25]);%Part (b)
set(h,�linewidth�,[1.0])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� D(E) (per eV per nmˆ2) ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.6.2.2

clear all

t=3;m=800;% Use 200 and 800 for two plots
a0=0.14;D=2*m*a0*sqrt(3)/(2*pi);Eg=2*t*0.14/D;c=pi*D;L=1;D
nu0=round(2*m/3);a=3*a0/2;

E=linspace(0,0.25,101);
DG=(2*c*L/(2*pi*a*a*t*t))*E;

DN=zeros(1,101);
for nu=nu0-100:nu0+100
Ek=((t*2*pi/sqrt(3))*((3*nu/(2*m))-1))+(i*1e-12);

DN=DN+((2*L/(pi*a*t))*abs(real(E./(sqrt((E.ˆ2)-(Ekˆ2))))));
end

hold on
h1=plot(DG,E,�bx�);
h2=plot(DN,E,�b�);
hold on
axis([0 50 0 0.25]);
set(h1,�linewidth�,[1.0])
set(h2,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� D(E) (per eV per nm) ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on
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% Fig.6.3.3

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;q=1.602e-19;a=5e-10;L=10e-9;

k=0.5*linspace(-1,1,201)/a;
Ek=(hbarˆ2)*(k.ˆ2)/(2*0.25*m*q);
EE=linspace(0,0.2,201);

%Subband (1,1)
E1=2*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=((EE-E1)+abs(EE-E1))./(2*abs(EE-E1));

%Subbands (1,2) and (2,1)
E2=5*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((EE-E2)+abs(EE-E2))./(abs(EE-E2)));

%Subband (2,2)
E3=8*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((EE-E3)+abs(EE-E3))./(2*abs(EE-E3)));

hold on
h=plot(k,E1+Ek,�b�);%Part (a)
h=plot(k,E2+Ek,�b�);%Part (a)
h=plot(k,E3+Ek,�b�);%Part (a)
%h=plot(M,EE,�b�);%Part (b)
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(�k ( / m )�);%Part (a)
%xlabel(� M ( E ) �);%Part (b)
ylabel(�E - Ec ( eV ) -->�);
axis([-1e9 1e9 0 0.3]);%Part (a)
%axis([0 5 0 0.3]);%Part (b)
grid on

% Fig.6.3.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;q=1.602e-19;a=5e-10;L=10e-9;

k=0.5*linspace(-1,1,201)/a;
Ek=-(hbarˆ2)*(k.ˆ2)/(2*0.25*m*q);
EE=linspace(0,-0.2,201);

%Subband (1,1)
E1=-2*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=((E1-EE)+abs(E1-EE))./(2*abs(E1-EE));
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%Subbands (1,2) and (2,1)
E2=-5*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((E2-EE)+abs(E2-EE))./(abs(E2-EE)));

%Subband (2,2)
E3=-8*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((E3-EE)+abs(E3-EE))./(2*abs(E3-EE)));

hold on
%h=plot(k,E1+Ek,�b�);%Part (a)
%h=plot(k,E2+Ek,�b�);%Part (a)
%h=plot(k,E3+Ek,�b�);%Part (a)
h=plot(M,EE,�b�);%Part (b)
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
%xlabel(�k ( / m )�);%Part (a)
xlabel(� M ( E ) �);%Part (b)
ylabel(�E - Ev ( eV ) -->�);
%axis([-1e9 1e9 -0.3 0]);%Part (a)
axis([0 5 -0.3 0]);%Part (b)
grid on

Chapter 7

% Fig.7.1.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=3e-10;m=9.110e-31;

%Conduction band parameters
mw=.07*m;ma=.22*m;mb=(.7*mw)+(.3*ma);kk=0*.1*pi;
Ec=0;Eb=(.7*0)+(.3*1.25);

for nk=1:24
Nw=nk+10;Nb=2*Nw;Np=Nb+Nw+Nb;W(nk)=(Nw-1)*a*1e9;
tb=(hbarˆ2)/(2*mb*(aˆ2)*q);tw=(hbarˆ2)/(2*mw*(aˆ2)*q);
t=[tb*ones(1,Nb) tw*ones(1,Nw-1) tb*ones(1,Nb)];
tt=[0 t]+[t 0];
Ebk=Eb+(tb*(kkˆ2));Ewk=tw*(kkˆ2);Ebwk=(Eb/2)+((tb+tw)*(kkˆ2)/2);
U=Ec+[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
H=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);
[V,D]=eig(H);D=diag(D);D=(sort(real(D)))�;
E1(nk)=D(1);E2(nk)=D(2);

end

hold on
h1=plot(W,E1,�b�);
h1=plot(W,E2,�b--�);
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set(h1,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� W ( nm ) ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([2 10 0 .4])
grid on

% Fig.7.1.6

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=3e-10;m=9.110e-31;

%Conduction band parameters
mw=.07*m;ma=.22*m;mb=(.7*mw)+(.3*ma);
Nw=24;Nb=2*Nw;Np=Nb+Nw+Nb;W=(Nw-1)*a*1e9
Ec=0;Eb=(.7*0)+(.3*1.25);

for nk=1:26
kk=(nk-1)*a*1e10/500;k(nk)=kk/(a*1e9);
tb=(hbarˆ2)/(2*mb*(aˆ2)*q);tw=(hbarˆ2)/(2*mw*(aˆ2)*q);
t=[tb*ones(1,Nb) tw*ones(1,Nw-1) tb*ones(1,Nb)];
tt=[0 t]+[t 0];
Ebk=Eb+(tb*(kkˆ2));Ewk=tw*(kkˆ2);Ebwk=(Eb/2)+((tb+tw)*(kkˆ2)/2);
U=Ec+[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
H=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);
[V,D]=eig(H);D=diag(D);D=(sort(real(D)))�;
E1(nk)=D(1);E2(nk)=D(2);
end

E1w=E1(1)+(hbarˆ2)*(k.ˆ2)./(2*mw*1e-18*q);
E2w=E2(1)+(hbarˆ2)*(k.ˆ2)./(2*mw*1e-18*q);
E1b=E1(1)+(hbarˆ2)*(k.ˆ2)./(2*mb*1e-18*q);
E2b=E2(1)+(hbarˆ2)*(k.ˆ2)./(2*mb*1e-18*q);

hold on
h=plot(k,E1,�b�);
h=plot(k,E2,�b�);
h=plot(k,E1w,�b:�);
h=plot(k,E2w,�b:�);
h=plot(k,E1b,�b--�);
h=plot(k,E2b,�b--�);
set(h,�linewidth�,[1.0])
set(gca,�Fontsize�,[24])
xlabel(� k ( / nm ) ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([0 .5 0 0.4])
grid on
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% Fig.7.2.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;eps0=8.85E-12;epsr=4;m=.25*9.1e-31;
mu=0;kT=.025;n0=m*kT*q/(2*pi*(hbarˆ2));n0

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);e0=q*a/eps0;
Nox=7;Nc=10;%use Nc=10,30 for 3,9nm channel respectively
Np=Nox+Nc+Nox;XX=a*1e9*[1:1:Np];
Ec=[3*ones(Nox,1);0*ones(Nc,1);3*ones(Nox,1)];

%Hamiltonian matrix
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

%dielectric constant matrix
D2=epsr*((2*diag(ones(1,Np)))-(diag(ones(1,Np-1),1))-(diag(ones(1,Np-1),-1)));
iD2=inv(D2);

Vg=.25;Ubdy=-epsr*[Vg;zeros(Np-2,1);Vg];
%Ubdy=-epsr*[0;zeros(Np-2,1);Vg];;%for asymmetric bias
U0=iD2*Ubdy;

%self-consistent calculation
U1=1e-6*ones(Np,1);UU=U1;change=1;
while change>1e-3

U1=U1+(0.1*(UU-U1));
[P,D]=eig(T+diag(Ec)+diag(U1));D=diag(D);
rho=log(1+exp((mu-D)./kT));rho=P*diag(rho)*P�;
n=2*n0*diag(rho);

for kp=1:Np
ncl(kp)=a*2*(n0ˆ1.5)*Fhalf((mu-Ec(kp)-U1(kp))/kT);

end
%n=ncl�;%use for semiclassical calculation
UU=U0+(iD2*e0*n);
change=max(max((abs(UU-U1))));

U=Ec+U1;%self-consistent band profile
end

%electron density in channel per cm2
ns=1e-4*sum(sum(n.*[zeros(Nox,1);ones(Nc,1);zeros(Nox,1)]));Vg,ns

nn=1e-6*n./a;%electron density per cm3
Fn=mu*ones(Nc+Nox+Nox,1);

hold on
h=plot(XX,nn,�g�);
%h=plot(XX,Ec,�g--�);
%h=plot(XX,Ec+U1,�g�);
%h=plot(XX,Fn,�g:�);
set(h,�linewidth�,[2.0])
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set(gca,�Fontsize�,[24])
xlabel(� z (nm) ---> �)
%ylabel(� E (eV) ---> �)
ylabel(� n (/cm3) --->�)
%axis([0 8 -.5 3])
axis([0 8 0 15e18])
grid on

% Fig.7.3.1

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;eps0=8.85E-12;epsr=4;m=.25*9.1e-31;
mu=0;kT=.025;n0=m*kT*q/(2*pi*(hbarˆ2));

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);e0=q*a/eps0;
Nox=7;Nc=10;%use Nc=10,30 for 3,9nm channel respectively
Np=Nox+Nc+Nox;XX=a*1e9*[1:1:Np];
Ec=[3*ones(Nox,1);0*ones(Nc,1);3*ones(Nox,1)];

%Hamiltonian matrix
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

%dielectric constant matrix
D2=epsr*((2*diag(ones(1,Np)))-(diag(ones(1,Np-1),1))-(diag(ones(1,Np-1),-1)));
iD2=inv(D2);

Vg=linspace(-.25,.25,26);
for kg=1:26
Ubdy=-epsr*[Vg(kg);zeros(Np-2,1);Vg(kg)];kg;
%Ubdy=-epsr*[0;zeros(Np-2,1);Vg(kg)];;%for asymmetric bias
U0=iD2*Ubdy;

%self-consistent calculation
U1=1e-6*ones(Np,1);UU=U1;change=1;
while change>1e-3

U1=U1+(0.1*(UU-U1));
[P,D]=eig(T+diag(Ec)+diag(U1));D=diag(D);
rho=log(1+exp((mu-D)./kT));rho=P*diag(rho)*P�;
n=2*n0*diag(rho);

for kp=1:Np
ncl(kp)=a*2*(n0ˆ1.5)*Fhalf((mu-Ec(kp)-U1(kp))/kT);

end
%n=ncl�;%use for semiclassical calculation
UU=U0+(iD2*e0*n);
change=max(max((abs(UU-U1))));

U=Ec+U1;%self-consistent band profile
end
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%electron density in channel per cm2
ns(kg)=1e-4*sum(sum(n.*[zeros(Nox,1);ones(Nc,1);zeros(Nox,1)]));

nn(:,kg)=1e-6*n./a;%electron density per cm3
Fn(:,kg)=mu*ones(Nc+Nox+Nox,1);

end
C=q*(ns(26)-ns(25))/(Vg(26)-Vg(25));
d=1e-4*epsr*eps0*2/C;d,C
%ns=log10(ns)

hold on
h=plot(Vg,ns,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� Vg (V) ---> �)
ylabel(� ns (/cm2) ---> �)
%axis([0 .3 0 3.5e12])
grid on

% Fig.7.3.2

clear all

E=linspace(-.5,1,1001);
D=sqrt(E);

hold on
h=plot(D,E,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� D ( E ) (arb. units) �)
ylabel(� E ( eV ) �)
grid on

% Fig.7.3.4

clear all

E=linspace(-.25,.25,501);dE=E(2)-E(1);kT=0.025;Ef=0;
V=0;mu1=Ef+(V/2);mu2=Ef-(V/2);
f1=1./(1+exp((E-mu1)./kT));f2=1./(1+exp((E-mu2)./kT));
FT=[0 diff(f1)];FT=FT.*(-1/dE);
%dE*(sum(f1-f2))/V

hold on
h=plot(FT,E,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
grid on
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% Fig.7.4.1, Fig.7.4.2

clear all

z=zeros(5);Z=zeros(10);
%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=2.45e-10*4/sqrt(3);m=9.110e-31;
d1=[1 1 1]/4;d2=[1 -1 -1]/4;d3=[-1 1 -1]/4;d4=[-1 -1 1]/4;

%sp3s* model parameters
soa=.3787/3;soc=.0129/3;
Esa=-8.3431;Epa=1.0414;Esc=-2.6569;Epc=3.6686;Esea=8.5914;Esec=6.7386;
Vss=-6.4513;Vpasc=-5.7839;Vpasec=-4.8077;
Vsapc=4.4800;Vseapc=4.8422;Vxx=1.9546;Vxy=5.0779;

%Valence band Luttinger-Kohn parameters
Ev=-.1;del=.3;g1=6.85;g2=2.1;g3=2.9;
t1=(hbarˆ2)*g1/(2*m*q*(aˆ2));
t2=(hbarˆ2)*g2/(2*m*q*(aˆ2));
t3=(hbarˆ2)*g3/(2*m*q*(aˆ2));

Nt=101;kk=1*linspace(0,1,Nt);
l=1;m=0;n=0;%X-direction
l=0.5;m=0.5;n=0.5;%L-direction

for Nk=1:Nt
k=2*pi*kk(Nk)*[l m n];

%sp3s* model
p1=exp(i*sum(k.*d1));p2=exp(i*sum(k.*d2));
p3=exp(i*sum(k.*d3));p4=exp(i*sum(k.*d4));

g0=(p1+p2+p3+p4)/4;g1=(p1+p2-p3-p4)/4;
g2=(p1-p2+p3-p4)/4;g3=(p1-p2-p3+p4)/4;

a1=diag([Esa Epa Epa Epa Esea]);A1=[a1 z;z a1];
a2=diag([Esc Epc Epc Epc Esec]);A2=[a2 z;z a2];
b=[Vss*g0 Vsapc*g1 Vsapc*g2 Vsapc*g3 0;

Vpasc*g1 Vxx*g0 Vxy*g3 Vxy*g2 Vpasec*g1;
Vpasc*g2 Vxy*g3 Vxx*g0 Vxy*g1 Vpasec*g2;
Vpasc*g3 Vxy*g2 Vxy*g1 Vxx*g0 Vpasec*g3;
0 Vseapc*conj(g1) Vseapc*conj(g2) Vseapc*conj(g3) 0];B=[b z;z b];
h=[a1 b;b� a2];H=[A1 B;B� A2];

aso=soa*[0 0 0 0 0 0 0 0 0 0;
0 0 -i 0 0 0 0 0 1 0;
0 i 0 0 0 0 0 0 -i 0;
0 0 0 0 0 0 -1 i 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 -1 0 0 0 i 0 0;
0 0 0 -i 0 0 -i 0 0 0;
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0 1 i 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0];

cso=soc*[0 0 0 0 0 0 0 0 0 0;
0 0 -i 0 0 0 0 0 1 0;
0 i 0 0 0 0 0 0 -i 0;
0 0 0 0 0 0 -1 i 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 -1 0 0 0 i 0 0;
0 0 0 -i 0 0 -i 0 0 0;
0 1 i 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0];H=H+[aso Z;Z cso];

[V,D]=eig(H);
eiglst = sum(D);
E(Nk,:) = sort(real(eiglst));

%Valence band Luttinger-Kohn model
P=Ev+(t1*sum(k.*k));Q=t2*((k(1)ˆ2)+(k(2)ˆ2)-(2*(k(3)ˆ2)));
R=-(sqrt(3)*t2*((k(1)ˆ2)-(k(2)ˆ2)))+(i*2*t3*sqrt(3)*k(1)*k(2));
S=2*t3*sqrt(3)*((k(1)-(i*k(2)))*k(3));

H4=-[P+Q -S R 0;
-S� P-Q 0 R;
R� 0 P-Q S;
0 R� S� P+Q];[V,D]=eig(H4);

eiglst = sum(D);
ELK4(Nk,:) = sort(real(eiglst));

H6=-[P+Q -S R 0 -S/sqrt(2) sqrt(2)*R;
-S� P-Q 0 R -sqrt(2)*Q sqrt(1.5)*S;
R� 0 P-Q S sqrt(1.5)*S� sqrt(2)*Q;
0 R� S� P+Q -sqrt(2)*R� -S�/sqrt(2);
-S�/sqrt(2) -sqrt(2)*Q� sqrt(1.5)*S -sqrt(2)*R P+del 0;
sqrt(2)*R� sqrt(1.5)*S� sqrt(2)*Q� -S/sqrt(2) 0 P+del];

[V,D]=eig(H6);
eiglst = sum(D);
ELK6(Nk,:) = sort(real(eiglst));

end

kk=-kk;%L-direction

hold on
h1=plot(kk,E,�b�);
%h2=plot(kk,ELK4,�b--�);% Fig.6.4.1
h2=plot(kk,ELK6,�b--�);% Fig.6.4.2
set(h1,�linewidth�,[2.0])
set(h2,�linewidth�,[3.0])
set(gca,�Fontsize�,[24])
xlabel(� ka (fraction of maximum value) ---> �)



371 MATLAB codes used to generate text figures

ylabel(� Energy ( eV ) ---> �)
axis([-1 1 -2 3])
grid on

% Fig.7.4.4

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=3e-10;m=9.110e-31;

Eb=.15;
%Luttinger-Kohn parameters
g1=6.85;g2=2.1;g3=2.9;%GaAs
w1=(hbarˆ2)*g1/(2*m*q*(aˆ2));
w2=(hbarˆ2)*g2/(2*m*q*(aˆ2));
w3=(hbarˆ2)*g3/(2*m*q*(aˆ2));

g1=3.45;g2=0.68;g3=1.29;%AlAs
a1=(hbarˆ2)*g1/(2*m*q*(aˆ2));b1=(.7*w1)+(.3*a1);
a2=(hbarˆ2)*g2/(2*m*q*(aˆ2));b2=(.7*w2)+(.3*a2);
a3=(hbarˆ2)*g3/(2*m*q*(aˆ2));b3=(.7*w3)+(.3*a3);

Ev=0;Evb=(0.7*0)+(0.3*0.75);kx=0*pi;ky=0*pi;k2=(kxˆ2)+(kyˆ2);

for nk=1:20
Nw=nk+10;Nb=Nw;Np=Nb+Nw+Nb;W(nk)=(Nw-1)*a*1e9;Z=zeros(Np);nk
X(nk)=Nw-1;
t=[b1*ones(1,Nb) w1*ones(1,Nw-1) b1*ones(1,Nb)];tt=[0 t]+[t 0];
Ebk=Evb+(b1*k2);Ewk=(w1*k2);Ebwk=(Ebk+Ewk)/2;
U=Ev+[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
P=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);

t=-2*[b2*ones(1,Nb) w2*ones(1,Nw-1) b2*ones(1,Nb)];tt=[0 t]+[t 0];
Ebk=b2*k2;Ewk=w2*k2;Ebwk=(Ebk+Ewk)/2;
U=[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
Q=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);

Ebk=-(sqrt(3)*b2*((kxˆ2)-(kyˆ2)))+(i*2*b3*sqrt(3)*kx*ky);
Ewk=-(sqrt(3)*w2*((kxˆ2)-(kyˆ2)))+(i*2*w3*sqrt(3)*kx*ky);
Ebwk=(Ebk+Ewk)/2;
U=[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
R=diag(U);

t=2*i*sqrt(3)*(kx-(i*ky))*[b3*ones(1,Nb) w3*ones(1,Nw-1) b3*ones(1,Nb)];
S=diag(t,1)-diag(t,-1);

H=[P+Q Z;Z P+Q];HL=[P-Q Z;Z P-Q];
HC=[-S R;R� S�];

H=-[H HC;HC� HL];

[V,D]=eig(H);D=diag(D);D=-(sort(real(-D)))�;
E1(nk)=D(1);E2(nk)=D(2);E3(nk)=D(3);E4(nk)=D(4);
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E5(nk)=D(5);E6(nk)=D(6);E7(nk)=D(7);E8(nk)=D(8);
end

%Analytical results for infinite well
Ean1=-(w1-(2*w2))*(piˆ2)./(X.ˆ2);
Ean2=-(w1+(2*w2))*(piˆ2)./(X.ˆ2);

hold on
%h=plot(W,Ean1,�b�);
%h=plot(W,Ean2,�b�);
h=plot(W,E1,�b�);
%h=plot(W,E2,�bx�);
h=plot(W,E3,�b�);
%h=plot(W,E4,�b+�);
h=plot(W,E5,�b�);
%h=plot(W,E6,�bx�);
h=plot(W,E7,�b�);
%h=plot(W,E8,�b+�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� W ( nm ) ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([3 9 -.25 0])
grid on

% Fig.7.4.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;q=1.602e-19;a=3e-10;m=9.110e-31;

%Luttinger-Kohn parameters
g1=6.85;g2=2.1;g3=2.9;%GaAs
w1=(hbarˆ2)*g1/(2*m*q*(aˆ2));
w2=(hbarˆ2)*g2/(2*m*q*(aˆ2));
w3=(hbarˆ2)*g3/(2*m*q*(aˆ2));

g1=3.45;g2=0.68;g3=1.29;%AlAs
a1=(hbarˆ2)*g1/(2*m*q*(aˆ2));b1=(.7*w1)+(.3*a1);
a2=(hbarˆ2)*g2/(2*m*q*(aˆ2));b2=(.7*w2)+(.3*a2);
a3=(hbarˆ2)*g3/(2*m*q*(aˆ2));b3=(.7*w3)+(.3*a3);

Ev=0;Evb=(0.7*0)+(0.3*0.75);

Nw=18;Nb=Nw;Np=Nb+Nw+Nb;W=(Nw-1)*a*1e9,Z=zeros(Np);

for nk=1:26
k(nk)=(nk-1)/500;% in Aˆ-1
l=0;m=1;lm=sqrt((lˆ2)+(mˆ2));
kx=(l/lm)*k(nk)*a*1e10;ky=(m/lm)*k(nk)*a*1e10;
k2=(kxˆ2)+(kyˆ2);
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t=[b1*ones(1,Nb) w1*ones(1,Nw-1) b1*ones(1,Nb)];tt=[0 t]+[t 0];
Ebk=Evb+(b1*k2);Ewk=(w1*k2);Ebwk=(Ebk+Ewk)/2;
U=Ev+[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
P=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);

t=-2*[b2*ones(1,Nb) w2*ones(1,Nw-1) b2*ones(1,Nb)];tt=[0 t]+[t 0];
Ebk=b2*k2;Ewk=w2*k2;Ebwk=(Ebk+Ewk)/2;
U=[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
Q=-diag(t,1)-diag(t,-1)+diag(tt)+diag(U);

Ebk=-(sqrt(3)*b2*((kxˆ2)-(kyˆ2)))+(i*2*b3*sqrt(3)*kx*ky);
Ewk=-(sqrt(3)*w2*((kxˆ2)-(kyˆ2)))+(i*2*w3*sqrt(3)*kx*ky);
Ebwk=(Ebk+Ewk)/2;
U=[Ebk*ones(1,Nb) Ebwk Ewk*ones(1,Nw-2) Ebwk Ebk*ones(1,Nb)];
R=diag(U);

t=-2*i*sqrt(3)*(kx-(i*ky))*[b3*ones(1,Nb) w3*ones(1,Nw-1) b3*ones(1,Nb)]/2;
S=diag(t,1)-diag(t,-1);

H=[P+Q Z;Z P+Q];HL=[P-Q Z;Z P-Q];
HC=[-S R;R� S�];

H=-[H HC;HC� HL];
[nk sum(sum(abs(H-H’)))]

[V,D]=eig(H);D=diag(D);D=-(sort(real(-D)))�;
E1(nk)=D(1);E2(nk)=D(2);E3(nk)=D(3);E4(nk)=D(4);
end

k=k*10;%per Angstrom to per nm
hold on
%h=plot(W,Ean1,�b�);
%h=plot(W,Ean2,�b�);
h=plot(k,E1,�b�);
%h=plot(k,E2,�bx�);
h=plot(k,E3,�b�);
%h=plot(k,E4,�b+�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� k ( /nm ) ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([0 .5 -.1 0])
grid on

Chapter 8

% Fig.8.1

clear all

E=linspace(-.3,.3,50001);dE=E(2)-E(1);gam=0.05;
D=(gam/(2*pi))./(((E-.14).ˆ2)+((gam/2)ˆ2));
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D=D+(gam/(2*pi))./(((E-.04).ˆ2)+((gam/2)ˆ2));%Use for Fig.P.5.2
D=D+((gam/(2*pi))./(((E+.06).ˆ2)+((gam/2)ˆ2)));%Use for Fig.P.5.2
D=D+(gam/(2*pi))./(((E+.15).ˆ2)+((gam/2)ˆ2));
dE*sum(D)

hold on
h=plot(D,E,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� D(E) (per eV) --->�)
ylabel(� E (eV) ---> �)
grid on

% Fig.8.2.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=0.25*9.1e-31;mu=0.25;kT=0.025;

%inputs
a=2e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);Np=50;t0
X=a*linspace(0,Np-1,Np);U=linspace(-0.05,0.05,Np);
H=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
H=H+diag(U);HP=H;
HP(1,Np)=-t0;HP(Np,1)=-t0;

[V,D]=eig(HP);D=diag(D);
rho=1./(1+exp((D-mu)./kT));
rho=V*diag(rho)*V�;rho=diag(rho)/a;

%Energy grid for Green’s function method
Emin=-0.1;Emax=0.4;NE=250;E=linspace(Emin,Emax,NE);dE=E(2)-E(1);zplus=i*1e-12;
f=1./(1+exp((E-mu)./kT));

%Green’s function method
sig1=zeros(Np,Np);sig2=zeros(Np,Np);n=zeros(Np,1);

for k=1:NE
ck=(1-((E(k)+zplus-U(1))/(2*t0)));ka=acos(ck);

sigma=-t0*exp(i*ka);sig1(1,1)=sigma;
ck=(1-((E(k)+zplus-U(Np))/(2*t0)));ka=acos(ck);

sigma=-t0*exp(i*ka);sig2(Np,Np)=sigma;
G=inv(((E(k)+zplus)*eye(Np))-H-sig1-sig2);
n=n+(f(k)*(dE*diag(i*(G-G�))/(2*pi*a)));

end

hold on
h=plot(X,rho,�b�);
h=plot(X,n,�bx�);
grid on
set(h,�linewidth�,[2.0])
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set(gca,�Fontsize�,[24])
xlabel(� X ( m ) --> �)
ylabel(� n ( / m ) --> �)

% Fig.8.2.6

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=0.25*9.1e-31;mu=0.25;kT=0.025;

%inputs
a=2e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);Np=50;t0
X=a*linspace(0,Np-1,Np);U=linspace(-0.05,0.05,Np);
H=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
H=H+diag(U);

%Energy grid for Green’s function method
Emin=-0.1;Emax=0.4;NE=250;E=linspace(Emin,Emax,NE);dE=E(2)-E(1);zplus=i*1e-12;
f=1./(1+exp((E-mu)./kT));

%Green’s function method
sig1=zeros(Np,Np);sig2=zeros(Np,Np);

for k=1:NE
ck=(1-((E(k)+zplus-U(1))/(2*t0)));ka=acos(ck);

sigma=-t0*exp(i*ka);sig1(1,1)=sigma;
ck=(1-((E(k)+zplus-U(Np))/(2*t0)));ka=acos(ck);

sigma=-t0*exp(i*ka);sig2(Np,Np)=sigma;
G=inv(((E(k)+zplus)*eye(Np))-H-sig1-sig2);
D0=diag(i*(G-G�))/(2*pi);D1(k)=D0(1);D2(k)=D0(Np);

end

hold on
%h=plot(X,U,�b�);
h=plot(D1,E,�b�);
%h=plot(D2,E,�b�);
grid on
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� X ( m ) --> �)
ylabel(� U ( eV ) --> �)
%axis([0 1e-8 -.1 .4])
axis([0 1.2 -.1 .4])

%Fig.8.4.1

ep=-0.25;ep1=0.25;t=0.5;eta=0.025;
H=[ep t;t ep1];

E=linspace(-1,1,201);
for kE=1:201
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G=inv(((E(kE)+(i*eta))*eye(2,2))-H);
A=diag(i*(G-G�));D(kE)=A(1);
end

hold on
h=plot(D,E,�gx�);
set(h,�linewidth�,[3.0])
set(gca,�Fontsize�,[24])
grid on
xlabel(� LDOS (/ eV) –> �)
ylabel(� Energy (eV) –> �)

%Fig.E.8.2

clear all
t0=1;zplus=1e-10;

NE=81;X=linspace(-1,3,NE);
for kE=1:NE

E=2*X(kE);
ck=1-((E+zplus)/(2*t0));ka=acos(ck);
if imag(ka) < 0

ka=ka�;end
sig(kE)=-t0*exp(i*ka);

end

hold on
h1=plot(real(sig),X,�g�);
h2=plot(imag(sig),X,�g�);
h1=plot(real(sig),X,�go�);
set(h1,�linewidth�,[2.0])
set(h2,�linewidth�,[4.0])
set(gca,�Fontsize�,[24])
grid on
xlabel(� --> �)
ylabel(� --> �)

%Fig. E.8.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=0.25*9.1e-31;zplus=i*5e-3;

%inputs
a=2.5e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);Np=100;t0
X=a*linspace(0,Np-1,Np);U=zeros(1,Np);U(Np/2)=5/(a*1e10);
H=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
H=H+diag(U);
E=0.1;



377 MATLAB codes used to generate text figures

%Green’s function method
sig1=zeros(Np,Np);sig2=zeros(Np,Np);

ck=(1-((E+zplus-U(1))/(2*t0)));ka=acos(ck);
sigma=-t0*exp(i*ka);sig1(1,1)=sigma;

ck=(1-((E+zplus-U(Np))/(2*t0)));ka=acos(ck);
sigma=-t0*exp(i*ka);sig2(Np,Np)=sigma;

G=inv(((E+zplus)*eye(Np))-H-sig1-sig2);
D0=diag(i*(G-G’))/(2*pi);

hold on
h=plot(X,D0,’b’);
grid on
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� X (m) --> �)
ylabel(� DOS ( / eV ) --> �)

Chapter 9

% Fig.9.4.2

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.055e-34;m=9.110e-31;q=1.602e-19;a=5e-10;L=10e-9;

k=0.5*linspace(-1,1,201)/a;
Ek=(hbarˆ2)*(k.ˆ2)/(2*0.25*m*q);
EE=linspace(0,0.2,201);

%Subband (1,1)
E1=2*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=((EE-E1)+abs(EE-E1))./(2*abs(EE-E1));

%Subbands (1,2) and (2,1)
E2=5*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((EE-E2)+abs(EE-E2))./(abs(EE-E2)));

%Subband (2,2)
E3=8*(hbarˆ2)*(piˆ2)/(2*0.25*m*q*Lˆ2);
M=M+(((EE-E3)+abs(EE-E3))./(2*abs(EE-E3)));
k=k*1e-9;
hold on
h=plot(k,E1+Ek,�b�);
h=plot(k,E2+Ek,�b�);
h=plot(k,E3+Ek,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(�k ( / nm )�);
ylabel(�E - Ec ( eV ) -->�);
axis([-1 1 0 0.3]);
grid on
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% Fig.9.5.5

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;IE=(q*q)/(2*pi*hbar);
Ef=0.1;kT=.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);
NS=15;NC=30;ND=15;Np=NS+NC+ND;

%Hamiltonian matrix
%NS=15;NC=20;ND=15;Np=NS+NC+ND;UB=0*ones(Np,1);%no barrier
%NS=23;NC=4;ND=23;Np=NS+NC+ND;

%UB=[zeros(NS,1);0.4*ones(NC,1);zeros(ND,1);];%tunneling barrier
NS=15;NC=16;ND=15;Np=NS+NC+ND;

UB=[zeros(NS,1);.4*ones(4,1);zeros(NC-8,1);.4*ones(4,1);zeros(ND,1)];%RT barrier
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
T=T+diag(UB);

%Bias
V=0;mu1=Ef+(V/2);mu2=Ef-(V/2);
U1=V*[.5*ones(1,NS) linspace(0.5,-0.5,NC) -.5*ones(1,ND)];
U1=U1�;%Applied potential profile

%Energy grid for Green’s function method
NE=501;E=linspace(-.2,.8,NE);zplus=i*1e-12;dE=E(2)-E(1);

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));

%Transmission
I=0;%Current
for k=1:NE

sig1=zeros(Np);sig2=zeros(Np);sig3=zeros(Np);
ck=1-((E(k)+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);

ck=1-((E(k)+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

G=inv(((E(k)+zplus)*eye(Np))-T-diag(U1)-sig1-sig2-sig3);
TM(k)=real(trace(gam1*G*gam2*G�));

I=I+(dE*IE*TM(k)*(f1(k)-f2(k)));
end
V,I

XX=a*1e9*[1:1:Np];
XS=XX([1:NS-4]);XD=XX([NS+NC+5:Np]);

hold on
%h=plot(TM,E,�b�);
h=plot(XX,U1+UB,�b�);
h=plot(XS,mu1*ones(1,NS-4),�b--�);



379 MATLAB codes used to generate text figures

h=plot(XD,mu2*ones(1,ND-4),�b--�);
%axis([0 1.1 -.2 .8])
axis([0 15 -.2 .8])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
%xlabel(� Transmission ---> �)
xlabel(� z ( nm ) --->�)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.9.5.8

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;IE=(q*q)/(2*pi*hbar);
Ef=0.1;kT=.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);
NS=15;NC=30;ND=15;Np=NS+NC+ND;

%Hamiltonian matrix
NS=15;NC=16;ND=15;Np=NS+NC+ND;

UB=[zeros(NS,1);.4*ones(4,1);zeros(NC-8,1);.4*ones(4,1);zeros(ND,1)];%RT barrier
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
T=T+diag(UB);

%Bias
V=0;mu1=Ef+(V/2);mu2=Ef-(V/2);
U1=V*[.5*ones(1,NS) linspace(0.5,-0.5,NC) -.5*ones(1,ND)];
U1=U1�;%Applied potential profile

%Energy grid for Green’s function method
NE=501;E=linspace(-.2,.8,NE);zplus=i*1e-12;dE=E(2)-E(1);

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));

%Transmission
I=0;%Current
for k=1:NE

sig1=zeros(Np);sig2=zeros(Np);sig3=zeros(Np);
ck=1-((E(k)+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);

ck=1-((E(k)+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

sig3(Np/2,Np/2)=-i*0.25;gam3=i*(sig3-sig3�);%Büttiker probe
G=inv(((E(k)+zplus)*eye(Np))-T-diag(U1)-sig1-sig2-sig3);

T12=real(trace(gam1*G*gam2*G�));
T13=real(trace(gam1*G*gam3*G�));
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T23=real(trace(gam2*G*gam3*G�));
TM(k)=T12+(T13*T23/(T12+T23));

I=I+(dE*IE*TM(k)*(f1(k)-f2(k)));
end
V,I

XX=a*1e9*[1:1:Np];
XS=XX([1:NS-4]);XD=XX([NS+NC+5:Np]);

hold on
h=plot(TM,E,�b�);
axis([0 1.1 -.2 .8])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� Transmission ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on

% Fig.9.5.10

clear all

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;IE=(q*q)/(2*pi*hbar);
Ef=0.1;kT=.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);
NS=15;NC=30;ND=15;Np=NS+NC+ND;
%Hamiltonian matrix
%NS=15;NC=20;ND=15;Np=NS+NC+ND;UB=0*ones(Np,1);%no barrier
%NS=23;NC=4;ND=23;Np=NS+NC+ND;

%UB=[zeros(NS,1);0.4*ones(NC,1);zeros(ND,1);];%tunneling barrier
NS=15;NC=16;ND=15;Np=NS+NC+ND;

UB=[zeros(NS,1);0.4*ones(4,1);zeros(NC-8,1);0.4*ones(4,1);zeros(ND,1)];%RT barrier
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));
T=T+diag(UB);

%Bias
NV=26;VV=linspace(0,.5,NV);
for iV=1:NV
V=VV(iV);mu1=Ef+(V/2);mu2=Ef-(V/2);
U1=V*[.5*ones(1,NS) linspace(0.5,-0.5,NC) -.5*ones(1,ND)];
U1=U1�;%Applied potential profile

%Energy grid for Green’s function method
NE=101;E=linspace(-.2,.8,NE);zplus=i*1e-12;dE=E(2)-E(1);

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));

%For infinite 2-D cross-section
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%f1=(2*m*kT*q/(2*pi*hbarˆ2)).*log(1+exp((mu1-E)./kT));
%f2=(2*m*kT*q/(2*pi*hbarˆ2)).*log(1+exp((mu2-E)./kT));

%Transmission
I=0;%Current
for k=1:NE

sig1=zeros(Np);sig2=zeros(Np);sig3=zeros(Np);
ck=1-((E(k)+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);

ck=1-((E(k)+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

sig3(Np/2,Np/2)=-i*0.00025;gam3=i*(sig3-sig3�);%Büttiker probe
G=inv(((E(k)+zplus)*eye(Np))-T-diag(U1)-sig1-sig2-sig3);

T12=real(trace(gam1*G*gam2*G�));
T13=real(trace(gam1*G*gam3*G�));
T23=real(trace(gam2*G*gam3*G�));

TM(k)=T12+(T13*T23/(T12+T23));
I=I+(dE*IE*TM(k)*(f1(k)-f2(k)));

end
II(iV)=I;V,I
end

XX=a*1e9*[1:1:Np];
XS=XX([1:NS-4]);XD=XX([NS+NC+5:Np]);

hold on
h=plot(VV,II,�b�);
%h=plot(XX,U1+UB,�b�);
%h=plot(XS,mu1*ones(1,NS-4),�b--�);
%h=plot(XD,mu2*ones(1,ND-4),�b--�);
axis([0 .5 0 3.5e-7])
%axis([0 15 -.3 .7])
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� Voltage ( V ) ---> �)
%xlabel(� z ( nm ) --->�)
%ylabel(� Energy ( eV ) ---> �)
ylabel(� Current ( A ) ---> �)
grid on

Chapter 10

% Fig.10.4.4

clear all

beta=pi*linspace(-1,1,201);w0=1;
y=sqrt(2*w0*(1-cos(beta)));

hold on
h=plot(beta,y,�b�);
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set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
grid on

% Fig.10.4.5

clear all

beta=pi*linspace(-1,1,201);w1=1;w2=2;
for n=1:201

A=[w1+w2 w1+(w2*exp(-i*beta(n)));w1+(w2*exp(i*beta(n))) w1+w2];
[V,D]=eig(A);D=sort(real(diag(D)));
D1(n)=real(sqrt(D(1)));D2(n)=real(sqrt(D(2)));

end

hold on
h=plot(beta,D1,�b�);
h=plot(beta,D2,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
grid on

Chapter 11

% Fig.11.2.2, 11.2.7

clear all

%1-D with elastic phase-breaking and/or coherent, T vs. E, fixed length

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=1*9.1e-31;IE=(q*q)/(2*pi*hbar);kT=.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);D=0.01*0;

%Energy grid
NE=401;E=linspace(.1,.3,NE);zplus=i*1e-12;dE=E(2)-E(1);

%Bias
V=0.01;f1=1/(1+exp((-V/2)/kT));

f2=1/(1+exp((V/2)/kT));

%Hamiltonian
Np=40;UB=zeros(Np,1);UB(5)=0.5*1;UB(36)=0.5*1;
U1=V*linspace(0.5,-0.5,Np)�;XX=a*linspace(0,Np-1,Np);
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

%Iterative solution
for k=1:NE

sig1=zeros(Np);sig2=zeros(Np);
ck=1-((E(k)+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
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sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);
ck=1-((E(k)+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

%calculating the Green function, G self-consistently
G=inv(((E(k)+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2);change=1;

while(change>1e-4)
sigp=diag(D*diag(G));

S=inv(((E(k)+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2-sigp);
change=sum(sum(abs(G-S)))/(sum(sum(abs(G)+abs(S))));

G=(0.5*G)+(0.5*S);
end
G=S;A=i*(G-G�);
M=D*(G.*conj(G));

%calculating the electron density,n(r;E)
gamp=i*(sigp-sigp�);gamma=gam1+gam2+gamp;

sigin1=f1*gam1;sigin2=f2*gam2;
n=(inv(eye(Np)-M))*diag(G*(sigin1+sigin2)*G�);
siginp=D*diag(n);

%calculating the correlation function Gn
Gn=G*(sigin1+sigin2+siginp)*G�;

%calculating the effective transmission
I1(k)=(1/(f2-f1))*real(trace(gam1*Gn)-trace(sigin1*A));
I2(k)=(1/(f1-f2))*real(trace(gam2*Gn)-trace(sigin2*A));

end

hold on
h=plot(I1,E,�b�);
%h=plot(I2,E,�bx�);
%h=plot(1e9*XX,U1+UB,�b�);
%h=plot(1e9*XX,U1+UB,�bo�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
%xlabel(� x ( nm ) ---> �)
%ylabel(� Potential ( eV ) ---> �)
xlabel(� Transmission ---> �)
ylabel(� Energy ( eV ) ---> �)
grid on
axis([0 1.1 .1 .3])

% Fig.11.2.4, 11.2.6

clear all

%multi-moded coherent transport,T vs. E

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=9.1e-31;IE=(q*q)/(2*pi*hbar);kT=.025;
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%inputs
a=5e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);
%Energy grid
NE=11;% 11 for one scatterer, 101 for two
E=linspace(0.1,0.3,NE);zplus=i*1e-12;dE=E(2)-E(1);

%Bias
V=0.01;f1=1/(1+exp((-V/2)/kT));

f2=1/(1+exp((V/2)/kT));

%Transverse modes
NW=15;NT=7;
alpha=(4*t0*diag(ones(1,NW)))-(t0*diag(ones(1,NW-1),1))-(t0*diag(ones(1,NW-1),-1));
[VT,D]=eig(alpha);[D ind]=sort(diag(D));
in=[];for k=1:NT

in=[in ind(k)];end
VT=VT(:,in);D=diag(VT�*alpha*VT);

%Hamiltonian
Np=40;UB=zeros(Np,1);UB(5)=0.25*1;UB(36)=0.25*0;
impshape=[linspace(0,1,7) linspace(1,0,NW-7)];
U1=V*linspace(0.5,-0.5,Np)�;
al=alpha+(U1(1)*eye(NW,NW));
H=VT�*al*VT;H1=H;
Z=zeros(NT,NT);bet=-t0*eye(NT,NT);
for N=2:Np

al=alpha+(U1(N)*eye(NW,NW));al1=al;
al=al+(diag(UB(N)*impshape));
al=VT�*al*VT;H=[H bet;bet� al];
al1=VT�*al1*VT;H1=[H1 bet;bet� al1];%Use for one scatterer
bet=[Z;bet];

end

%calculating the transmission
for k=1:NE

ck=(D-E(k)-zplus+U1(1))./(2*t0);ka=acos(ck);
s1=-t0*exp(i.*ka);sig1=[diag(s1) zeros(NT,NT*(Np-1));zeros(NT*(Np-1),NT*Np)];

ck=(D-E(k)-zplus+U1(Np))./(2*t0);ka=acos(ck);
s2=-t0*exp(i.*ka);sig2=[zeros(NT*(Np-1),NT*Np);zeros(NT,NT*(Np-1)) diag(s2);];
gam1=i*(sig1-sig1�);gam2=i*(sig2-sig2�);

G=inv(((E(k)+zplus)*eye(NT*Np))-H-sig1-sig2);
T(k)=real(trace(gam1*G*gam2*G�));

G1=inv(((E(k)+zplus)*eye(NT*Np))-H1-sig1-sig2);%Use for one scatterer
M(k)=real(trace(gam1*G1*gam2*G1�));[k T(k) M(k)],%use for one scatterer

end

Tsc=T./(2-(T./M));%semiclassical addition, use for one scatterer

%save condfluct2
XX=a*linspace(0,Np-1,Np);
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hold on
%h=plot(T,E,�b�);
h=plot(Tsc,E,�b--�);
%h=plot(M,E,�b�);
set(h,�linewidth�,[2.0]);
set(gca,�Fontsize�,[24]);
xlabel(� Transmission ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([0 5 .1 .3])
grid on

% Fig.11.2.8

clear all

%1-D elastic coherent and/or phase-breaking, R vs. L, fixed E

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;IE=(q*q)/(2*pi*hbar);kT=.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);D=0.05;V=0.01;

%Bias

%Energy grid
E=0.1;zplus=i*1e-12;

f1=1/(1+exp((-V/2)/kT));
f2=1/(1+exp((V/2)/kT));

%Current
for k=2:21

Np=k;UB=zeros(Np,1);U1=V*linspace(0.5,-0.5,Np)�;k
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

sig1=zeros(Np);sig2=zeros(Np);sig3=zeros(Np);
ck=1-((E+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);

ck=1-((E+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

%calculating the Green function, G self-consistently
G=inv(((E+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2);change=1;

while(change>1e-4)
sigp=diag(D*diag(G));

S=inv(((E+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2-sigp);
change=sum(sum(abs(G-S)))/(sum(sum(abs(G)+abs(S))));

G=(0.5*G)+(0.5*S);
end
G=S;A=i*(G-G�);
M=D*(G.*conj(G));
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%calculating the inscattering functions from the contacts F1,F2
gam1=i*(sig1-sig1�);gam2=i*(sig2-sig2�);
gamp=i*(sigp-sigp�);gamma=gam1+gam2+gamp;

sigin1=f1*gam1;sigin2=f2*gam2;
n=(inv(eye(Np)-M))*diag(G*(sigin1+sigin2)*G�);
siginp=D*diag(n);

%calculating the correlation function Gn
Gn=G*(sigin1+sigin2+siginp)*G�;

%calculating the current
I1(k-1)=(1/(f1-f2))*real(trace(gam1*Gn)-trace(sigin1*A));
I2(k-1)=(1/(f1-f2))*real(trace(gam2*Gn)-trace(sigin2*A));
L(k-1)=k*a*1e10;

end

L=L./10;% Angstrom to nm
hold on
h=plot(L,1./I2,�b�);
%h=plot(I1+I2,�g--�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� Length ( nm ) ---> �)
ylabel(� Normalized resistance ---> �)
axis([0 6 0 3])
grid on

% Fig.11.3.1, 11.3.2, 11.3.3

clear all

%1-D with inelastic scattering

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;Ef=0.15;kT=0.025;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);

%Hamiltonian matrix
Np=40;UB=0*[zeros(10,1);0.25*ones(Np-10,1)];
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

%Bias
V=0.1;mu1=Ef+(V/2);mu2=Ef-(V/2);
U1=V*[.5*ones(1,1) linspace(0.5,-0.5,Np-2) -.5*ones(1,1)]�;%Applied potential profile

D=1e-1;%Scattering strength

%Energy grid
NE=101;E=linspace(-.05,.35,NE);zplus=i*1e-12;dE=E(2)-E(1);

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));
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%Initial guess
sigin=0*ones(Np,NE);sigout=0*ones(Np,NE);

%Iterative solution of transport equation
change=1;it=1;n=zeros(Np,NE);p=zeros(Np,NE);
while change>1e-3
for k=1:NE

sig1=zeros(Np);sig2=zeros(Np);
ck=1-((E(k)+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);

ck=1-((E(k)+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);

sigin1(:,k)=f1(k)*diag(gam1);sigin2(:,k)=f2(k)*diag(gam2);
sigout1(:,k)=(1-f1(k))*diag(gam1);sigout2(:,k)=(1-f2(k))*diag(gam2);
gamp=sigin(:,k)+sigout(:,k);

G=inv(((E(k)+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2+(i*0.5*diag(gamp)));
A=diag(i*(G-G�));
n(:,k)=real(diag(G*((f1(k)*gam1)+(f2(k)*gam2)+diag(sigin(:,k)))*G�));
p(:,k)=A-n(:,k);

end

off=0;%less than NE-1, equal to 0 for elastic
C=exp(-dE*off/kT);
ne=n(:,[off+1:NE]);ne=[ne zeros(Np,off)];
na=n(:,[1:NE-off]);na=[zeros(Np,off) na];
pa=p(:,[off+1:NE]);pa=[pa zeros(Np,off)];
pe=p(:,[1:NE-off]);pe=[zeros(Np,off) pe];

siginnew=(D*ne)+(C*D*na);
sigoutnew=(D*pe)+(C*D*pa);
change=sum(sum(abs(siginnew-sigin)));
change=change+sum(sum(abs(sigoutnew-sigout)))
sigin=((1-it)*sigin)+(it*siginnew);
sigout=((1-it)*sigout)+(it*sigoutnew);
end

I1=real((sigout1.*n)-(sigin1.*p));I1=sum(I1);
I2=real((sigout2.*n)-(sigin2.*p));I2=sum(I2);
I3=real((sigout.*n)-(sigin.*p));I3=sum(I3);

I123=(dE/V)*[sum(I1) sum(I2) sum(I3)],%Normalized Conductance
IE=(dE/(V*V))*[sum(E.*I1) sum(E.*I2) sum(E.*I3)],%Normalized Power
kirchoff=[sum(I123) sum(IE)],%checking for conservation of current and energy current

save inel0
hold on
h=plot(I1,E,�b�);
h=plot(I2,E,�b--�);
%h=plot(I3,E,�c�);
set(h,�linewidth�,[2.0])
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set(gca,�Fontsize�,[24])
xlabel(� Normalized current / energy ---> �)
ylabel(� Energy ( eV ) ---> �)
axis([-.2 .2 -.05 .35])

% Fig.11.4.4

clear all

%Ballistic self-consistent solution

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;
kT=0.0259;zplus=i*1e-12;eps0=8.854e-12;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);N=40;
Ef=0.1;Ec=-0.5;Vg=0;
r=5e-9;tox=5e-9;K=2;%Use large value of permittivity K for Laplace limit
U0=q/2/pi/a/K/eps0.*log((r+tox)/r)

%Hamiltonian matrix
Np=40;
H0=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-(t0*diag(ones(1,Np-1),-1));

%Energy grid
NE=401;E=linspace(-0.5,0.3,NE);dE=E(2)-E(1);I0=(qˆ2)/hbar/2/pi

%Bias
iV=41;V=linspace(0,0.4,iV);n0=0;UL=-Vg*ones(Np,1);U=UL;
for kk=1:iV

Vd=V(kk);mu1=Ef;mu2=Ef-Vd;
sig1=zeros(Np);sig2=zeros(Np);
epsilon=1;
while (epsilon>0.001)

rho=0;
for k=1:NE

f1=1/(1+exp((E(k)-mu1)/kT));f2=1/(1+exp((E(k)-mu2)/kT));

cka1=1-(E(k)+zplus-Ec)/2/t0; ka1=acos(cka1);
sig1(1,1)=-t0*exp(i*ka1);gam1=i*(sig1-sig1�);

cka2=1-(E(k)+zplus-Ec+Vd)/2/t0; ka2=acos(cka2);
sig2(N,N)=-t0*exp(i*ka2);gam2=i*(sig2-sig2�);

G=inv((E(k)+zplus)*eye(N)-H0-diag(U)-sig1-sig2);A=i*(G-G�);
sigin1=f1*gam1;sigin2=f2*gam2;

Gn=G*(sigin1+sigin2)*G�;rho=rho+dE/2/pi*Gn;
T(k)=trace(gam1*G*gam2*G�);

I1(k)=real(trace(sigin1*A)-trace(gam1*Gn));
I2(k)=-real(trace(sigin2*A)-trace(gam2*Gn));

end
n=real(diag(rho));Unew=UL+(U0*(n-n0));
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dU=Unew-U;epsilon=max(abs(dU))
U=U+0.25*dU;

if Vd==0
n0=n;epsilon=0;end

end
ID1=2*I0*dE*sum(I1);ID2=2*I0*dE*sum(I2);%2 for spin
I(kk)=ID1;

end

save IV2
IonL=I0*Ef
hold on
h=plot(V,I,�b�);
h=plot(V,IonL*ones(iV,1),�bx�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
grid on
xlabel(� Voltage ( V ) --> �)
ylabel(� Current ( A ) --> �)

% Fig.E.11.5

clear all

%1-D tunneling and/or elastic phase-breaking, R vs. L, fixed E

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;m=.25*9.1e-31;IE=(q*q)/(2*pi*hbar);kT=.025;
zplus=i*1e-51;

%inputs
a=3e-10;t0=(hbarˆ2)/(2*m*(aˆ2)*q);
D=3e-1;% Scattering Strength: 2e-1 (x’s) and 3e-1 (o’s) eVˆ2
V=0.001;% Applied voltage
mu=0.1;% Fermi energy

f1=1/(1+exp((-V/2)/kT));%Fermi function in contact 1 at E=mu
f2=1/(1+exp((V/2)/kT));%Fermi function in contact 2 at E-mu

% Actual calculation
E=mu;
for k=5:26

Np=k;%Length of barrier = (Np-2)*a
UB=[0;0.5*ones(Np-2,1);0];% Barrier height
U1=V*linspace(0.5,-0.5,Np)�;% Applied potential profile
T=(2*t0*diag(ones(1,Np)))-(t0*diag(ones(1,Np-1),1))-...

(t0*diag(ones(1,Np-1),-1));%Tight-binding Hamiltonian

sig1=zeros(Np);sig2=zeros(Np);sig3=zeros(Np);
ck=1-((E+zplus-U1(1)-UB(1))/(2*t0));ka=acos(ck);
sig1(1,1)=-t0*exp(i*ka);gam1=i*(sig1-sig1�);%Self-energy for contact 1
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ck=1-((E+zplus-U1(Np)-UB(Np))/(2*t0));ka=acos(ck);
sig2(Np,Np)=-t0*exp(i*ka);gam2=i*(sig2-sig2�);%Self-energy for contact 2

%calculating the Green function, G self-consistently
G=inv(((E+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2);change=1;

while(change>1e-15)
sigp=diag(D*diag(G));%Self-energy due to scattering

S=inv(((E+zplus)*eye(Np))-T-diag(U1+UB)-sig1-sig2-sigp);
change=sum(sum(abs(G-S)))/(sum(sum(abs(G)+abs(S))));

G=(0.5*G)+(0.5*S);
end
G=S;A=i*(G-G�);M=D*(G.*conj(G));

%calculating the inscattering functions from the contacts F1,F2
gam1=i*(sig1-sig1�);gam2=i*(sig2-sig2�);
gamp=i*(sigp-sigp�);gamma=gam1+gam2+gamp;

sigin1=f1*gam1;sigin2=f2*gam2;
n=(inv(eye(Np)-M))*diag(G*(sigin1+sigin2)*G�);
siginp=D*diag(n);%Inflow due to scattering

%calculating the correlation function Gn
Gn=G*(sigin1+sigin2+siginp)*G�;

%calculating the current
I1(k-4)=(1/(f1-f2))*real(trace(gam1*Gn)-trace(sigin1*A));
I2(k-4)=(1/(f1-f2))*real(trace(gam2*Gn)-trace(sigin2*A));
L(k-4)=(k-2)*a*1e9;%in nanometers

end

hold on
h=plot(L,log10(-1./I1),�g�);% Current at left end
h=plot(L,log10(1./I2),�go�);% Current at right end
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
xlabel(� Length ( nm ) ---> �)
ylabel(� log10 ( resistance ) ---> �)
grid on

%Fig.E.11.6

clear all
%0-D with inelastic scattering

%Constants (all MKS, except energy which is in eV)
hbar=1.06e-34;q=1.6e-19;I0=q*q/(2*pi*hbar);

%Parameters
H0=5;Ef=0;kT=0.0025;dE=0.0005;zplus=i*1e-12;gamma=0.1;

D0=0;Dnu=0*[0.5 0.7];Nph=size(Dnu,2);
hnu=[100 550];%Multiply by dE for actual hnu

Nhnu=1./((exp(dE*hnu./kT))-1);
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%Bias
NV=203;VV=linspace(-0.51,0.5,NV);dV=VV(2)-VV(1);
for iV=1:NV
V=VV(iV);mu1=Ef;mu2=Ef-V;U1=(-0.5)*V;

%Energy grid
E=[mu2-(10*kT)-(10*dE):dE:mu1+(10*kT)+(10*dE)];

if V<0
E=[mu1-(10*kT)-(10*dE):dE:mu2+(10*kT)+(10*dE)];

end
NE=size(E,2);[iV NE]

f1=1./(1+exp((E-mu1)./kT));
f2=1./(1+exp((E-mu2)./kT));

%Initial guess
n=zeros(1,NE);p=zeros(1,NE);
sigin1=zeros(1,NE);sigout1=zeros(1,NE);
sigin2=zeros(1,NE);sigout2=zeros(1,NE);
sigin=0*ones(1,NE);sigout=0*ones(1,NE);

%Iterative solution of transport equation
change=1;it=1;
while change>1e-3

for k=1:NE
sig1=-i*gamma/2;gam1=i*(sig1-sig1�);
sig2=-i*gamma/2;gam2=i*(sig2-sig2�);

sigin1(k)=f1(k)*gam1;sigin2(k)=f2(k)*gam2;
sigout1(k)=(1-f1(k))*gam1;sigout2(k)=(1-f2(k))*gam2;
gamp=sigin(k)+sigout(k);

G=inv((E(k)+zplus)-H0-U1-sig1-sig2+(i*0.5*gamp));
A=i*(G-G�);

n(k)=real(G*((f1(k)*gam1)+(f2(k)*gam2)+sigin(k))*G’);
p(k)=A-n(k);

end

siginnew=D0*n;sigoutnew=D0*p;
for iph=1:Nph

inu=hnu(iph);
if inu<NE
ne=n([inu+1:NE]);ne=[ne zeros(1,inu)];
na=n([1:NE-inu]);na=[zeros(1,inu) na];
pe=p([inu+1:NE]);pe=[pe zeros(1,inu)];
pa=p([1:NE-inu]);pa=[zeros(1,inu) pa];

siginnew=siginnew+((Nhnu(iph)+1)*Dnu(iph)*ne)+(Nhnu(iph)*Dnu(iph)*na);
sigoutnew=sigoutnew+(Nhnu(iph)*Dnu(iph)*pe)+((Nhnu(iph)+1)*Dnu(iph)*pa);
end

end

change=sum(sum(abs(siginnew-sigin)));
change=change+sum(sum(abs(sigoutnew-sigout)));
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sigin=((1-it)*sigin)+(it*siginnew);
sigout=((1-it)*sigout)+(it*sigoutnew);

end

I1=real((sigout1.*n)-(sigin1.*p));I1=sum(I1);
I2=real((sigout2.*n)-(sigin2.*p));I2=sum(I2);
I3=real((sigout.*n)-(sigin.*p));I3=sum(I3);

I123=dE*[sum(I1) sum(I2) sum(I3)],%Normalized Conductance
%IE=(dE/(V*V))*[sum(E.*I1) sum(E.*I2) sum(E.*I3)],%Normalized Power
%kirchoff=[sum(I123) sum(IE)],%checking for conservation of current and energy current

II(iV)=sum(I2)*dE*I0;
end

G1=diff(II)./dV;VG=VV([2:NV]);
IETS=diff(G1)./dV;VETS=VV([3:NV]);

hold on
%h=plot(VV,II,�rx�);
h=plot(VG,G1,�b–�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
%xlabel(� Voltage (V) --> �)
%ylabel(� d2I/dV2 --> �)

Appendix

% Fig.A.5.2, A.5.3

clear all

NE=1001;E=linspace(-.25,.25,NE);zplus=i*1e-3;dE=E(2)-E(1);kT=.00026;
Nep=5001;ep=linspace(-1,1,Nep);tau=0.05;dep=ep(2)-ep(1);delta=3.117*tau*tau/2
ep0=-25*delta;U=50*delta;[U/pi abs(ep0)]/delta
D=ones(1,Nep);f=1./(1+exp(ep./kT));fK=1./(1+exp(E./kT));tau=0.06;

for kE=1:NE
s0(kE)=dep*tau*tau*sum(D./(E(kE)-ep+zplus));
s1(kE)=dep*tau*tau*sum(D./(E(kE)-ep0-ep0-U+ep+zplus));
s2(kE)=dep*tau*tau*sum(D.*f./(E(kE)-ep+zplus));
s3(kE)=dep*tau*tau*sum(D.*f./(E(kE)-ep0-ep0-U+ep+zplus));
end

g=U./(E-ep0-U-s0-s0-s1);
GK=(1+(0.5*g))./(E-ep0-s0+(g.*(s2+s3)));
G=(1+(0.5*U./(E-ep0-U-s0)))./(E-ep0-s0);
A=i*(G-conj(G))/(2*pi);dE*sum(A)
AK=i*(GK-conj(GK))/(2*pi);dE*sum(AK)
dE*sum(AK.*fK)
del=-dE*sum(imag(s0))
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hold on
%h=plot(E,-imag(s0));
%h=plot(E,imag(s1));
%h=plot(E,imag(s2),�mx�);
%h=plot(E,imag(s3),�m�);
h=plot(A,E,�b--�);
h=plot(AK,E,�b�);
set(h,�linewidth�,[2.0])
set(gca,�Fontsize�,[24])
grid on
xlabel(� D(E) per eV --> �)
ylabel(� E ( eV ) --> �)



Further reading

This is not intended to be a representative bibliography, just a list of references that could help readers
broaden their understanding of the material presented herein, which is a very small subset of the vast
literature in the field.

General

This book has grown out of a graduate course (and recently its undergraduate version) that I have
been teaching for a number of years. The reader may find it useful to view the videostreamed course
lectures, which are publicly available through the web. Information should be available at my website

http://dynamo.ecn.purdue.edu/∼datta

and through the “nanohub” at www.nanohub.org.

1 Prologue

This chapter and the Appendix have been adapted from Datta (2004). With corrections.
The example used to illustrate the importance of the potential profile in determining the

current–voltage characteristics in Section 1.4 (Figs. 1.4.2, 1.4.3) is motivated by the experiments
discussed in

Datta S., Tian W., Hong S., Reifenberger R., Henderson J., and Kubiak C. P. (1997). STM current–
voltage characteristics of self-assembled monolayers (SAMs). Phys. Rev. Lett., 79, 2530.

We will not be discussing the Coulomb blockade regime in this book (other than Sections 1.5 and
3.4). For further reading, see for example, Bonet et al. (2002) and:

Kastner M. (1993). Artificial atoms. Phys. Today, 46, 24.
Likharev K. (1999). Single-electron devices and their applications. Proc. IEEE, 87, 606.
Kouwenhoven L. P. and McEuen P. L. (1997). Single electron transport through a quantum dot. In

Nano-Science and Technology, ed. G. Timp. AIP Press.
Ferry D. K. and Goodnick S. M. (1997). Transport in Nanostructures. Cambridge University Press.

Chapter 4.

The simple nanotransistor model briefly described in Section 1.6 is essentially the same as that
described in:

Rahman A., Guo J., Datta S., and Lundstrom M. (2003). Theory of ballistic transistors. IEEE Trans.
Electron Dev., 50, 1853.
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I mentioned in Section 1.6 that the regime of transport with t ≤ U0 presents major theoretical chal-
lenges (see, for example, Georges (2004)). One of the paradigms widely investigated in this context
is that of “Luttinger liquids,” see, for example, Giamarchi (2004).

For an introduction to the Kondo effect, see for example, Kouwenhoven and Glazman (2001).

2 Schrödinger equation

For a summary of basic quantum mechanics and the hydrogen atom the reader could consult any
beginning text, such as:

Eisberg R. and Resnick R. (1974, 1985). Quantum Physics. Wiley.
Cox P. A. (1996). Introduction to Quantum Theory and Atomic Structure. Oxford Chemistry Primers.

We have discussed only the finite difference method here. The reader may want to look up the finite
element method. See for example Ramdas Ram-Mohan (2002) or White et al. (1989).

3 Self-consistent field

For a detailed discussion of the self-consistent field method, the reader is directed to Herman and
Skillman (1963) and:

Slater, J. C. (1963–1974). Quantum Theory of Molecules and Solids, Vols. I–IV. McGraw-Hill.
Grant G. H. and Richards W. G. (1995). Computational Chemistry. Oxford Chemistry Primers.

For more discussion of the structural aspects:

Pettifor D. (1995). Bonding and Structure of Molecules and Solids. Oxford University Press.

The discussion in Section 3.4 is based on the approach described in:

Beenakker C. W. J. (1991). Theory of Coulomb blockade oscillations in the conductance of a quantum
dot. Phys. Rev. B, 44, 1646.

For a discussion of the interpretation of one-particle energy levels, see for example:

Brus L. E. (1983). A simple model for the ionization potential, electron affinity, and aqueous redox
potentials of small semiconductor crystallites. J. Chem. Phys., 79, 5566.

More recent references include:

Bakkers E. P. A. M., Hens Z., Zunger A., Franceschetti A., Kouwenhoven L. P., Gurevich L., and
Vanmaekelbergh D. (2001). Shell-tunneling spectroscopy of the single-particle energy levels of
insulating quantum dots. Nano Lett., 1, 551.

Niquet Y. M., Delerue C., Allan G., and Lannoo M. (2002). Interpretation and theory of tunneling
experiments on single nanostructures. Phys. Rev. B, 65, 165334.

4 Basis functions

The reader may enjoy the discussion of “base states” in Feynman (1965), especially Chapter 8.

Orthogonal basis functions are widely discussed in all quantum mechanics texts such as:
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Cohen-Tannoudji C., Diu B., and Laloe F. (1977). Quantum Mechanics. Wiley.
Schiff L. I. (1955). Quantum Mechanics. McGraw-Hill.

Non-orthogonal bases are discussed in more detail in quantum chemistry texts such as:

Szabo A. and Ostlund N. S. (1996). Modern Quantum Chemistry. Dover.

5 Bandstructure

Bandstructure-related concepts are discussed in solid-state physics texts like:

Ziman J. M. (1972). Principles of the Theory of Solids. Cambridge University Press.
Kittel C. (1976). Introduction to Solid State Physics. Wiley.

Section 5.3 closely follows the seminal work of Vogl et al. (1983). For more recent developments and
references, see for example:

Boykin T. B., Klimeck G., Chris Bowen R., and Oyafuso F. (2002). Diagonal parameter shifts due
to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B, 66, 125207,
and references therein.

We have only described the empirical tight-binding method. Many other approaches have been used,
most notably the pseudopotential method and the k · p method. See for example Fischetti (1991) and
Singh (1993).

6 Subbands

Detailed discussion of carbon nanotubes can be found in:

Dresselhaus M. S., Dresselhaus G., and Eklund P. C. (1996). Science of Fullerenes and Carbon
Nanotubes. Academic.

7 Capacitance

The term “quantum capacitance” was probably first introduced by:

Luryi S. (1988). Quantum capacitance devices. Appl. Phys. Lett., 52, 501.

It has been used by other authors, see for example:

Katayama Y. and Tsui D. C. (1993). Lumped circuit model of two-dimensional tunneling transistors.
Appl. Phys. Lett., 62, 2563.

For more on the multi-band effective mass model see Singh (1993).

8 Level broadening

For interesting discussions of the problem of describing irreversible phenomena starting from
reversible laws, see for example:

Prigogine I. (1980). From Being to Becoming. Freeman.
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Feynman R. P. (1965). The distinction of past and future. Character of Physical Law. MIT Press.
Chapter 5.

9 Coherent transport

For discussions of the transmission formalism the reader can consult Datta (1995) and Büttiker (1988).
Also:

Imry Y. (1997). Introduction to Mesoscopic Physics. Oxford University Press.
Ferry D. K. and Goodnick S. M. (1997). Transport in Nanostructures. Cambridge University Press.

To get a flavor of some of the more recent developments, see for example Beenakker (1997) and
Büttiker (2001).
Coherent transport calculations are often carried out non-self-consistently as in Fig. 9.5.10, but this
aspect can affect the current–voltage characteristics significantly. See for example Cahay et al. (1987),
which uses the transmission formalism to calculate the electron density, but I believe it is more
convenient to use the NEGF equations discussed in this chapter.

10 Non-coherent transport

For more on electron–photon interactions, see:

Feynman R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press.
Marcuse D. (1980). Principles of Quantum Electronics. Academic.

Semi-classical methods that ignore quantum interference but treat non-coherent scattering processes
in great detail are widely used to model electronic devices. For a lucid introduction, see:

Lundstrom M. S. (2000). Fundamentals of Carrier Transport. Cambridge University Press.

The lowest order treatment of electron–phonon interaction described in Section 10.3 is similar to that
described in Caroi et al. (1972).

I mention in Section 10.3 that the exclusion principle acts in a somewhat non-intuitive way. The
reader may want to look at Section 4.4 of Kadanoff and Baym (1962) and Section 8.2 of ETMS (Datta,
1995).

11 Atom to transistor

For more detailed discussions of the physics of conduction the reader can consult any of those under
“Coherent transport.” Chapter 7 of ETMS (Datta, 1995) discusses the similarities and differences
between the problem of electron transport and optical propagation.

The example on Peltier effect in Section 11.3.1 was suggested by Landauer and is based on Lake
and Datta (1992b). The discussion in Section 11.4 is based on the approach described in Lundstrom
(1997).

Quantum models for 1D devices based on the NEGF formalism have been extensively developed
by the “NEMO” group. See, for example, Klimeck et al. (1995).

These are available for public use via their website (http://hpc.jpl.nasa.gov/PEP/gekco/nemo).
Quantum models for molecular electronic devices based on the NEGF formalism have also been

developed. See for example, Zahid et al. (2003). This book also contains a brief discussion of the
NEGF equations in non-orthogonal bases in the Appendix.
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Appendix: advanced formalism

Despite the title, I believe the approach presented here is less “advanced” and more accessible to
beginners than the treatments available in the literature that may be needed for a systematic approach
to higher order calculations. A few standard references and review articles, which cover the classic
work on the NEGF formalism as applied to infinite homogeneous media, are Martin and Schwinger
(1959), Kadanoff and Baym (1962), Keldysh (1965), Danielewicz (1984), Rammer and Smith (1986),
Mahan (1987), and Khan et al. (1987).

Many authors have applied the NEGF formalism to problems involving finite structures following
Caroli et al. (1972). The basic picture presented in this book is based primarily on Datta (1989) and
Meir and Wingreen (1992) and Datta as explained in Section 1.6. Chapter 8 of ETMS (Datta, 1995)
has a discussion of the NEGF and its relation to the Landauer formalism.

The time-dependent equations described here are similar to those described in:

Jauho A. P., Wingreen N. S., and Meir Y. (1994). Time-dependent transport in interacting and non-
interacting resonant tunneling systems. Phys. Rev. B, 50, 5528.

Haug H. and Jauho A. P. (1996). Quantum Kinetics in Transport and Optics of Semiconductors.
Springer-Verlag.

The Green’s function equations described for the Kondo resonance are the same as those presented
in Meir et al. (1991).

Electron transport in strongly correlated systems is a topic of much current research. A few refer-
ences that may be useful are Georges (2004), Giamarchi (2004) and:

Fulde P. (1991). Electron Correlations in Molecules and Solids. Springer-Verlag.
Mahan G. D. (1991). Many-Particle Physics. Plenum.
Hewson A. C. (1993). The Kondo Problem to Heavy Fermions. Cambridge University Press.
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